A Low-Dimensional Perceptual Space for Intuitive BRDF Editing

Abstract: Understanding and characterizing material appearance based on human perception is challenging because of the high dimensionality and nonlinearity of reflectance data. We refer to the process of identifying specific characteristics of material appearance within the same category as material estimation, in contrast to material categorization which focuses on identifying inter-category differences [FNG15]. In this paper, we present a method to simulate the material estimation process based on human perception. We create a continuous perceptual space for measured tabulated data based on its underlying low-dimensional manifold. Unlike many previous works that only address individual perceptual attributes (such as gloss), we focus on extracting all possible dimensions that can explain the perceived differences between appearances. Additionally, we propose a new material editing interface that combines image navigation and sliders to visualize each perceptual dimension and facilitate the editing of tabulated BRDFs. We conduct a user study to evaluate the efficacy of the perceptual space and the interface in terms of appearance matching.