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Figure 1: ConJac Dragon. Pulling portions of the mesh generates lively motion using only a small number of dynamic nodes.

ABSTRACT

We present a new approach that allows large time steps in dynamic
simulations. Our approach, ConJac, is based on condensation, a
technique for eliminating many degrees of freedom (DOFs) by ex-
pressing them in terms of the remaining degrees of freedom. In this
work, we choose a subset of nodes to be dynamic nodes, and apply
condensation at the velocity level by defining a linear mapping
from the velocities of these chosen dynamic DOFs to the velocities
of the remaining quasistatic DOFs. We then use this mapping to
derive reduced equations of motion involving only the dynamic
DOFs. We also derive a novel stabilization term that enables us
to use complex nonlinear material models. ConJac remains stable
at large time steps, exhibits highly dynamic motion, and displays
minimal numerical damping. In marked contrast to subspace ap-
proaches, ConJac gives exactly the same configuration as the full
space approach once the static state is reached. ConJac works with
a wide range of moderate to stiff materials, supports anisotropy
and heterogeneity, handles topology changes, and can be combined
with existing solvers including rigid body dynamics.
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1 INTRODUCTION

Physics-based simulation of dynamic deformable objects has a
long history in computer graphics. Starting with the work by Ter-
zopoulos et al. [1987], algorithms for physics-based animation have
steadily become an integral part of the visual effects pipeline. Over
the years, various improvements have been made, including: novel
energy formulations [Smith et al. 2018], inversion recovery/safety
[Irving et al. 2004; Kim et al. 2019], novel Eulerian/Largrangian
formulations [Jiang et al. 2016; Levin et al. 2011], and completely
new time stepping schemes [Bouaziz et al. 2014; Müller et al. 2007].

Computational efficiency is one of the most important aspects
of simulation. Real-time applications such as games and virtual
surgery have strict computational budgets for physics, while of-
fline applications such as movies need efficiency so that artists can
quickly iterate on designs. However, efficiency comes at a price.
Various works havemade dynamic simulation of deformable objects
extremely efficient, but they inescapably introduce limitations. To
tackle this issue, we introduce a novel, reduced coordinate approach
that has the following desirable properties:

• Reproduces exactly the same static configuration as the stan-
dard finite element (FE) approach.

• Supports complex nonlinear materials, including heterogene-
ity, anisotropy, and biomechanical soft tissues.

• Does not require any precomputation.
• Supports topology changes.
• Retains dynamic motion at large time steps, without suffer-
ing from excessive numerical damping.

• Can be combined with existing frameworks, including rigid
body dynamics, into a fully two-way coupled simulation.

Existing works fail with respect to at least one of these properties.
The virtual surgery simulator of Bro-Nielsen and Cotin [1996] is
highly efficient and produces the same static configuration as the
full FE method, which is useful for predicting the behavior of a vir-
tual organ. However, it only supports relatively small deformations,
because only linear materials can be factorized as a precomputation.
In one of the seminal works on cloth simulation, Baraff and Witkin
[1998] greatly increased the efficiency of dynamics simulations by
introducing a linearly implicit integration method that allowed
large time steps. However, this approach fails to retain dynamics
under large time steps due to numerical damping. One of the most
important approaches to improving efficiency is subspace dynamics
[An et al. 2008; Barbič and James 2005; Choi and Ko 2005; Pan et al.
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2015; Pentland and Williams 1989; Teng et al. 2015]. These methods
achieve massive speed ups, but sacrifice local detail because the
subspace dimension must be kept at a minimum. They also require
precomputation, and cannot reproduce the same solution as FE
unless a prohibitively large subspace is used.

Our approach is based on condensation [Paz 1989], a technique
for eliminating many degrees of freedom (DOFs) by expressing
them in terms of the remaining DOFs. With ConJac, short for
Condensation Jacobian, we apply condensation at the velocity
level—a significant departure from previous work [Bro-Nielsen
and Cotin 1996; Gao et al. 2014; Paz 1989; Teng et al. 2015; Wilson
1974]. We select a “dynamic” subset of nodes as the true DOFs of
the system, and the remaining “quasistatic” nodes are assumed to
follow the dynamic nodes in a quasistatic fashion.1 More specifi-
cally, ConJac expresses the velocities of the quasistatic nodes as a
linear function of the dynamic nodes by leveraging the condition
that the net force acting on each quasistatic node vanishes. We also
derive a novel stabilization term that allows ConJac to be used with
an arbitrary material model. Previous work was limited to linear
materials.

We show that most of the important dynamics of an object are
captured by simulating just a few key dynamic nodes, and the re-
mainder can be handled quasistatically.We simulate a bar stretching,
compressing, bending, and twisting with only a few (1-4) dynamic
nodes placed along the central axis. We are also able to simulate
the dynamics of a dragon being pulled in various locations, and a
bunny being dropped on the floor, each with only 8 dynamic nodes.
The ConJac approach remains stable with large time steps because
the quasistatic nodes cannot move independently, which effectively
removes the small vibrations that can destabilize standard FE simu-
lators. With ConJac, a strong force suddenly applied to a node is
instantaneously propagated to the dynamic nodes, eliminating the
numerical wave that would force a full FE simulator to take small
time steps.

ConJac is amethod for reducing the DOFs of a system, and so it is
not tied to a specific time integrator. In this paper, we showcase the
strengths of ConJac using the popular linearly implicit integration
scheme [Baraff and Witkin 1998]. We show that with a linearly
implicit scheme, ConJac is computationally inexpensive, requiring
only one linear solve per time step, but does not suffer excessively
from numerical damping and retains all of the advantages listed
earlier in the introduction.

2 RELATEDWORK

Simulation of deformable objects is a well-studied subject in com-
puter animation, and we refer the reader to excellent existing sur-
veys and tutorials [Nealen et al. 2006; Sifakis and Barbic 2012].

Our method is based on condensation, a technique from struc-
tural engineering [Guyan 1965; Irons 1965; Wilson 1974]. Originally
developed for static vibrational analysis, condensation has been
extended to include dynamics [Paz 1989]. With these classical con-
densation approaches, a global generalized eigenvalue problem is
solved for the reduced modes of the structure. In our work, we use
condensation to derive a linear mapping of the velocities rather
than to compute the modes.

1Previous works have called these “external/internal” or “master/slave” nodes.

Several previous works in computer graphics are motivated by
condensation. These methods use the stiffness matrix to couple
specially chosen dynamic DOFs to the remaining quasistatic nodes.
Our work is closely related to the work by Gao et al. [2014] on
Steklov-Poincaré skinning. They achieve impressive volumetric
effects for skinning using only the surface degrees of freedom, but is
limited to quasistatics and corotational elasticity. The same authors
later developed a “macroblock” solver for grid-based discretizations,
also using a stiffness matrix reduction [Mitchell et al. 2016]. By
solving the macroblocks in parallel and efficiently aggregating,
they quickly compute a deformation that matches the output of a
standard FE solver. However, they again rely on linear (corotational)
material that can be precomputed. Furthermore, stiff springs are
used to couple deformable objects to rigid bodies, whichmay reduce
the time step or introduce unwanted numerical damping.

One of the most important and popular approaches to improving
efficiency is subspace dynamics [An et al. 2008; Barbič and James
2005; Choi and Ko 2005; Li et al. 2014; Pan et al. 2015; Pentland
and Williams 1989]. Rather than simulating the full space of vertex
DOFs, dynamics are performed over a reduced set of DOFs. To
address artifacts that arise from the global support of subspace
basis functions, researchers have explored domain decompositions
where subspaces are computed per domain. To stitch these domains
together, Barbič and Zhao [2011] used locally aligned rigid frames,
while Kim and James [2011] used penalty forces. These methods
can achieve massive speed ups, but sacrifice local detail because the
subspace dimension must be kept at a minimum. They also require
precomputations such as modal analysis and cubature optimiza-
tion, so changing object topologies are challenging. Finally, they
generally do not reproduce the full FE solution unless the subspace
is prohibitively large.

Condensation has also been combined with subspace dynamics.
Traditionally, only linear materials could be used, but Teng et al.
[2015] efficiently performed subspace condensation at runtime,
allowing nonlinear materials to also be used. However, the overall
limitations remain. The subspace must be carefully constructed,
and while the condensation allows objectionable artifacts to be
avoided, the final deformation does not match the full FE solution.

Recently, Xian et al. [2019] introduced a multigrid-based method
to solve for deformation dynamics in the full space, and achieved
over 40 FPS on a mesh with over 60k vertices. However, they inherit
common limitations of multigrid methods. Without significant ex-
tensions, it is not possible to support topological changes, complex
materials (heterogeneity and anisotropy), and two-way coupling
with rigid body dynamics.

Finally, a number of efficient time stepping schemes have been
introduced by graphics researchers. Recently, Li et al. [2019] in-
troduced a domain-decomposed optimization method for implicit
numerical time integration. In the past two decades, Position-Based
Dynamics [Müller et al. 2007], Projective Dynamics [Bouaziz et al.
2014], and ADMM [Narain et al. 2016; Zhang et al. 2019] have be-
come popular, efficient alternatives to the standard time stepping
schemes. Although initially quite limited in terms of available mate-
rials and constraints, these methods have become quite general and
flexible. These time stepping schemes work well, but are monolithic,
and would require a complete rewrite of existing formulations to
make them work together. Our work is instead based on a simple
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mapping of velocities, which can be incorporated into a wide range
of existing explicit and implicit integrators.

3 CONJAC DYNAMICS

We begin with a high-level, didactic description of ConJac in action.
Imagine a vertical string discretized as a sequence of 1D nodes
(i.e., they can only move vertically). We fix the top node and pick
the bottom node to be the dynamic node. The remaining nodes in
the middle are labeled as quasistatic nodes. If we know the material
properties of the string (e.g., zero rest-length springs), then by
assuming that the net force on each quasistatic node remains zero,
we can calculate the position and velocities of all these quasistatic
nodes from the position and velocity of the single dynamic node at
the bottom of the string.

In this section, we will formalize this approach by deriving the
linear mapping between the quasistatic and dynamic nodes of a
volumetric solid composed of an arbitrary nonlinear material. We
will then derive equations of motion that allow us to simulate the
object using only the dynamic DOFs. The remaining nodes are
simulated quasistatically, so the final resting configuration exactly
matches the result of a full, non-reduced FE simulator.

3.1 ConJac Mapping

Once again, we select a set of dynamic nodes that are the exposed
degrees of freedom of the system. The remaining quasistatic nodes
move so that their net force always resolves to zero. The ConJac
framework uses the linear mapping that enforces this condition
between the dynamic and quasistatic nodal velocities:

vq = Jqdvd , (1)

where Jqd is the Jacobian term that we will derive in the rest of
this section. Given any velocities of the dynamic nodes, vd , this
mapping allows us to compute the velocities of the quasistatic
nodes, vq .

The derivation of Jqd in Eq. 1 starts with a linearization of the
forces, popularized by Baraff and Witkin [1998] and extensively
used by other researchers [Nealen et al. 2006]. We approximate the
implicit force at the next time step as:

f = f0 + K0(x − x0), (2)

where the superscript 0 denotes the quantities at the current time
step, and K = ∂f/∂x is the tangent stiffness matrix. Substituting
the next velocity as v = (x − x0)/h, where h is the step size, we
obtain:

f = f0 + K0hv. (3)
We follow previous condensation work [Bro-Nielsen and Cotin
1996; Gao et al. 2014; Paz 1989; Teng et al. 2015; Wilson 1974] and
partition each of the terms into dynamic and quasistatic quantities:(

fd
fq

)
=

(
f0d
f0q

)
+ h

(
K0
dd K0

dq
K0
qd K0

qq

) (
vd
vq

)
. (4)

Since we are interested in applying the zero net-force condition
on the quasistatic nodes, we extract the bottom row of Eq. 4. After
moving f0q and h to the left hand side (LHS), we have:

1
h

(
fq − f0q

)
= K0

qdvd + K
0
qqvq . (5)

Our goal is to obtain zero net-force on the quasistatic nodes, so we
set the force vectors to zero. (We will return to this point in §3.3.)
Rearranging Eq. 5 in the form of Eq. 1, vq = Jqdvd , we obtain our
condensation Jacobian (ConJac):

Jqd = −(K0
qq )

−1K0
qd . (6)

Moving forward, we will drop the superscript 0 from K, with the
understanding that these quantities are evaluated at the current
time step.

3.2 Equations of Motion

Armed with the ConJac mapping in Eq. 6, we are now ready to de-
rive the equations of motion. First, we define an expanded mapping
that includes both quasistatic and dynamic nodes:

v = Jvd , v =
(
vd
vq

)
, J =

(
I

Jqd

)
, (7)

where I is the identity matrix. This mapping passes the dynamic
velocities through untouched, while applying the ConJac map-
ping defined by Eq. 6 to the quasistatic velocities. Taking the time
derivative of Eq. 7, we have:

Ûv = JÛvd + ÛJvd . (8)

Plugging Ûv into Newton’s second law, MÛv = f , rearranging the
terms, and left multiplying by J⊤, we get:

J⊤MJÛvd = J⊤
(
f −MÛJvd

)
. (9)

The LHS matrix, J⊤MJ, is the effective inertia tensor acting on the
dynamic nodes. This generalized inertia includes not only the self
inertia of the dynamic nodes but also the inertia of the quasistatic
nodes, since any motion of the dynamic nodes automatically causes
the quasistatic nodes to move. The right hand side (RHS) vector is
pre-multiplied by the Jacobian transpose, J⊤. Since J⊤ =

(
I J⊤qd

)
,

the forces acting on quasistatic nodes are left-multiplied by J⊤qd to
project away the null-space. Finally, since the goal of our approach
is to approximate dynamics while preserving quasistatics, we ig-
nore the quadratic velocity vector on the RHS involving ÛJ, which
disappears when v is zero [Shabana 2013]. In our examples, the lack
of the quadratic velocity vector did not cause any visual artifacts.

The ConJac mapping can be used with a variety of time stepping
schemes. In this work, we use the popular linearly implicit (which
we call “Vanilla”) formulation [Baraff and Witkin 1998; Lloyd et al.
2012; Müller et al. 2008; Nealen et al. 2006]. This integration scheme
is easy to implement, requiring only a single linear solve per time
step. (

M − βh2K
)
v = Mv0 + hf . (10)

Here, the tangent stiffness matrix,K, is evaluated at the current time
step, but we have dropped the superscript for brevity. In addition to
the h2 factor in the stiffness term in Eq. 10, we also apply a positive
factor β to control the amount of damping [Barbič and James 2005;
Xu and Barbič 2017]. If we increase β , the simulation becomes more
stable but at the cost of added numerical damping.

We obtain our final ConJac equations of motion by projecting
Vanilla with the Jacobian:

J⊤
(
M − βh2K

)
Jvd = J⊤

(
Mv0 + hf

)
. (11)
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We solve this linear system at every time step for the new dynamic
velocities, vd . Once the dynamic velocities are computed, we com-
pute the quasistatic velocities as vq = Jqdvd . Then, as explained in
the next section, we apply stabilization to the positions at the end
of the time step.

3.3 Stabilization

The Jacobian, Jqd , defined in Eq. 6 can cause large errors for non-
linear materials, due to the linear approximation introduced in
Eq. 2. Since we are applying condensation at the velocity level, after
taking a time step, the quasistatic forces inevitably contain small
non-zero values, which implies that the LHS of Eq. 5 is not always
zero. In particular, the current force acting on the quasistatic nodes,
f0q , is not exactly balanced, and contains small non-zeros. (On the
other hand, the implicit force at the next time step, fq , is what we
want to eliminate, so it is set to zero.)

This observation allows us to compute the “residual” velocity
that drives the quasistatic nodes back to the zero net-force state. If
we do not throw away f0q from Eq. 5, we obtain:

vq = Jqdvd + bq , bq = −
1
h
(K0

qq )
−1f0q . (12)

This Baumgarte-like stabilization term, bq , is the key term that
makes our approach work, even in the presence of linearization
artifacts [Baumgarte 1972]. Rather than modifying the velocities,
we apply this stabilization term when we update the positions.
We multiply this factor by a scalar parameter γ that controls the
strength of the stabilization. The position updates for dynamic and
quasistatic nodes are then:

xd = x0d + hvd
xq = x0q + h(vq + γbq ).

(13)

When applied to the position, this stabilization term becomes
exactly a Newton correction term: ∆x = −γK−1

qq fq . In other words,
we apply one scaled Newton step at the position level after taking
a velocity step, with γ = 1 corresponding to a full Newton step. In
practice, we found that a full Newton step can sometimes cause
instabilities. The best value can be obtained with a line search, but
we found that simply setting γ = 1/3 worked well for our examples
(unless otherwise stated).

Without the stabilization term bq , the object becomes visibly
distorted due to the accumulation of error, and can eventually blow
up. This term had not been derived in previous approaches because
linearization does not cause any drift in linear materials. This sta-
bilization approach is both effective and efficient. An alternative
approach based on pre- or post-stabilization may work as well
[Cline and Pai 2003; Weinstein et al. 2006], but we speculate that
they will be less efficient and more difficult to implement.

3.4 Time Stepping

The overall simulation pseudocode for ConJac using linearly im-
plicit Euler [Baraff and Witkin 1998] is shown in Alg. 1. For com-
parison, we also show the Vanilla pseudocode, also using linearly
implicit integration, in Alg. 2.

With Vanilla, the performance bottleneck is the linear solve
for the new velocities (line 4). On the other hand, with ConJac,
solving for the new dynamic velocities is not the bottleneck because

Algorithm 1 ConJac pseudocode
1: (Optional) Initialize the quasistatic positions
2: ComputeM
3: while simulating do
4: Compute f,K
5: Compute J, b
6: Solve for vd (Eq. 11)
7: Compute vq = Jqdvd
8: Update x (Eq. 13)
9: end while

Algorithm 2 Vanilla pseudocode
1: ComputeM
2: while simulating do
3: Compute f,K
4: Solve for v (Eq. 10)
5: Update x = x0 + hv
6: end while

Eq. 11 is small. Instead, the bottleneck is in forming the Jacobian
(line 5), which involves a series of solves by Kqq , which cannot be
prefactored for nonlinear materials.

With our current implementation, each time step of ConJac
(lines 4-8 in Alg. 1) is about 20% slower than a time step of Vanilla
(lines 3-5 in Alg. 2) with 4 dynamic nodes, and 40% slower with 10
dynamic nodes (see Fig. 2). However, we more than make up for
this difference because ConJac allows much bigger time steps for
the same amount of dynamic behavior.

The initial nonlinear solve for the quasistatic positions in Con-
Jac (line 1 in Alg. 1) can be costly, but it only needs to be performed
once at the beginning of the simulation. We do not need to run
this expensive nonlinear optimization within the simulation loop
because of the stabilization term from §3.3. In fact, it is even possi-
ble to skip the initial nonlinear solve, since the stabilization term
eventually eliminates the drift and drives quasistatic nodes to their
zero net-force state over time.

4 RESULTS

We implemented our system in MATLAB and ran the simulations
on a consumer laptop with an Intel Core i9-9880H CPU @ 2.3 GHz
and 16 GB of RAM. We use MEX for filling the force vector and the
stiffness matrix, and CHOLMOD for sparse linear factorizations and
solves [Davis 2006]. The scene parameters are listed in Table 1. All of
the objects are table-top sized—roughly 5-15 cm across, weighing a
few hundred grams. For all results, we use the Stable Neo-Hookean
(SNH) base material [Smith et al. 2018]. This material is stable under
inversion, but like any non-linearmaterial, it can still need aNewton
solve plus line search to maintain stability under large deformations.
We found that when used with a linearly implicit scheme, it must
be heavily damped when using a large time step, especially when
Poisson’s ratio, ν , is close to 0.5.

Dragon. We start with a 10k node dragon, shown in Fig. 1.
This example shows that ConJac presents an attractive option
for efficiently producing lively simulations. We grab the jaws and
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Table 1: List of scene parameters. #vert: number of total ver-

tices. #dyn: number of dynamic vertices. #elem: number of

elements. mat: material model. Y: Young’s modulus (Pa). ν :
Poisson’s ratio.

Scene #vert #dyn #elem mat Y ν

Dragon 10456 0-10 37565 SNH 3e4 0.49
Twist 1029 1-32 4320 SNH 1e4 0.40
Hetero 5915 1 29376 SNH 1e4 0.40
Aniso 6591 1 32832 +aSTVK 1e4 0.40
Muscle 262 5 438 +aFUNG 3e4 0.49
BarCut 6050 2 29400 SNH 1e4 0.40
Bunny 5988 8 27695 SNH 4e4 0.45

the body of the dragon and pull them in different directions. After
some time has passed, we let go, instantaneously releasing the built-
up energy. We compare the results using ConJac and Vanilla,
both with time step h = 5e-3 for this 1 second simulation. For
the damping factor, we use β = 0.5 for ConJac and β = 3.7 for
Vanilla (Eq. 10 and Eq. 11). These values were chosen by manually
searching for the smallest β values in 0.1 increments that produced
stable simulations. As can be seen in the supplemental video, the
discrepancy in the β values are visibly significant. Using the same h,
ConJac produces highly dynamic results, whereas Vanilla produces

heavily damped results. Since we are using the linearly implicit
integrator, more dynamic results can be generated with Vanilla by
reducing h, but this adds computational cost. ConJac, on the other
hand, allows large time steps while retaining interesting dynamics.
If we reduce the time step to h = 2e-3 with Vanilla, the qualitative
behavior of the dragon becomes nearly as lively as ConJac, but
the wallclock simulation time increases to more than double the
time of ConJac with 6 dynamic nodes. For didactic purposes, we
also include a ConJac simulation with 0 dynamic nodes, which
produces a quasistatic simulation driven solely by the stabilization

V C0 C2 C4 C6 C8 C10
# dynamic nodes

0

20

40

60

80

100

120

W
al

lc
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 (s

)

Other
Solve
Factor
Fill

Figure 2:Wallclock times for Dragon. Starting from the left:

Vanilla, ConJac with 0, 2, 4, 6, 8, and 10 dynamic nodes.

Each bar is broken down into Fill (f and K), Factor, Solve,
and Other. As the number of dynamic nodes increases, the

Solve cost goes up linearly.

(a) (b)

(c) (d)

Figure 3: Twist scene: A bar is (a) compressed, (b) stretched,

(c) bent, (d) and twisted through kinematic motion. The bar

in these figures only have a single dynamic node.

term, bq from Eq. 12. For this example, we used the stabilization
factor γ = 1/5, since the Newton displacements immediately after
releasing the jaws and the body are extremely large. Once we add
dynamic nodes, the behavior becomes very lively, even with only
2 nodes. The wallclock times of ConJac is compared to Vanilla
in Fig. 2. Virtually all of the added cost is in the triangular solves—
since we require 3nd +1 solves, where nd is the number of dynamic
nodes, the cost increases linearly in nd . (The +1 is for computing
the stabilization term, bq .) For most objects, 4 to 8 dynamic nodes
are enough to produce convincingly dynamic results. We discuss
potential ways to improve performance in §5.1.

Twist. Here, we show the deformation
behavior of ConJac as we increase nd , the
number of dynamic nodes. For this scene,
we use ConJac to simulate a bar with one
of its ends moved kinematically to com-
press, stretch, bend, and twist the bar as
shown in Fig. 3. Fornd = {1, 2, 4}, we place
the dynamic nodes at equal intervals along the central horizontal
axis. For nd = {8, 16, 32}, we slice the bar orthogonal to the central
axis at equal intervals and place 4 dynamic nodes at the corners
of each of these vertical slices. Interestingly, it becomes difficult
to visually distinguish between these cases—even with 1 dynamic
node, the dynamic motion is convincing. When the dynamic nodes
are placed along the central axis (nd = {1, 2, 4}), we get the added
“feature”: the twisting waves are propagated instantaneously along
the bar, increasing the stability of the system. If the dynamic nodes
are placed along vertical slices (nd = {8, 16, 32}), we recover the
twisting dynamics.

(a) (b)

Figure 4: Hetero scene that divides a vertical bar mesh into

layers of alternating material stiffness.
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(a) (b) (c)

Figure 5: Aniso barwith (a) horizontal, (b) vertical, (c) helical

directional fibers.

Hetero. We show that ConJac efficiently and effectively han-
dles heterogeneous materials. In this example, we use ConJac to
simulate a vertical bar with alternating layers of stiffnesses. Fig. 4
shows that even with only one dynamic node, we can capture the
bulging of the soft layers. Because of gravity, the lower soft layer
bulges out more than the upper soft layer, even though they have
the same stiffness. Once the object reaches its static state, the final
shape is exactly the same as the one generated by Vanilla.

Aniso. We show the effect of anisotropic materials. On top of the
base SNH material, we add an anisotropic Saint Venant–Kirchhoff
material (aSTVK) [Kim et al. 2019]. In this example, we use ConJac
with one dynamic node to simulate a vertical bar with different
anisotropic directions: vertical, horizontal, diagonal, and helical.
Fig. 5 shows that when gravity compresses the bar, it deforms
differently depending on the fiber directions. Interestingly, the
helical fibers induce a twisting motion.

Muscle. ConJac can easily be combined with existing rigid body
dynamics to model a musculoskeletal system (Fig. 6). In this 2D

Figure 6: Muscle scene that combines ConJac with rigid

body dynamics. There is one dynamic node in the middle of

themuscle, colored green in the inset subfigure. The colored

lines in the muscle foreground show the fiber directions of

the anisotropic Fung material, activated from white to yel-

low to red. The muscle background is color coded in gray

with the stiffness of the SNH material.

(a) (b) (c)

Figure 7: BarCut scenewhere a bar is stretched apart, (a) cut,

and (b) fully separated into two halves. (c) The right piece is

further cut into two pieces. The left and middle pieces are

dynamic, while the right piece becomes quasistatic.

example, we combine ConJac with a reduced coordinate articu-
lated rigid body framework [Wang et al. 2019]. To attach the origin
and insertion nodes to the bones, we use a Jacobian mapping that
expresses the velocity of these nodes as a function of the velocities
of the joints. This allows us to solve for the velocities of the muscles
and joints simultaneously to give us full two-way coupling between
muscles and bones, which is important because the muscle weighs
more than the bones. We use SNH for the background isotropic
material, and anisotropic Fung (aFUNG) for the muscle fiber ma-
terial [Fung 2013]. We also take advantage of ConJac’s support
for heterogeneity—the stiffness of the background SNH material
is modulated so that it is stiffer in the tendon regions than in the
muscle region. In the resulting simulation, the dynamics of the
muscle is fully accounted for by a single, central dynamic node. In
total, the system is only 4-dimensional: 2 DOFs for the joints and 2
for the muscle. Unlike quasistatic muscle simulators that assume
both bones and muscles are quasistatic, with ConJac, we can keep
the bones fully dynamic and choose how dynamic we want the
muscles to be.

BarCut. In this example, we show that ConJac supports topol-
ogy changes.We start with a horizontal bar fixed at its two ends, and
we cut the bar in two locations (see Fig. 7). We place two dynamic
nodes on either side of the initial cut. Because ConJac requires no
precomputation, the cut can be placed anywhere. After the second
cut, the right-most piece loses all dynamic nodes and gracefully
degrades into a purely quasistatic model.

Bunny. In our last example, we show that ConJac can be ex-
tended to handle frictional contact.We drop a bunnywith 8 dynamic
nodes onto the floor with various starting orientations. We follow
the formulation by McAdams et al. [2011] for the contact penalty
force: f = K

(
(1 − α)nn⊤ + α I

)
(x − xs ), where K is a stiffness con-

stant, n is the collision normal, and xs is the closest point on the

(a) (b)

Figure 8: Bunny falling, colliding with the floor, (a) deform-

ing from the impact, (b) bouncing back up.
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collision surface. When α = 0, the spring acts only along the nor-
mal direction, and when α = 1, the spring acts isotropically. In
our experiments, we use α = 0.1. For friction, we use the velocity
filter approach by Bridson et al. [2002] to compute the post-friction
velocity, vf , of all nodes. For the coefficient of friction, we use a
global value of µ = 0.3. We then use weighted least squares to
compute our new dynamic velocity: v∗d = argmin∥vf − Jvd ∥2M̃,
where M̃ = M − βh2K with β = 0.5 as in other examples. This
solve is inexpensive, since we solve only for the dynamic nodes of
domains in contact. When collisions occur with quasistatic nodes,
the contact information is added to the global stiffness matrix, mak-
ing ConJac be collision-aware. ConJac intelligently transfers the
masses of the quasistatic nodes to the dynamic nodes, giving us a
small (24 × 24 in this case since there are 8 dynamic nodes) and
stable system to solve at each time step. Even with only 8 dynamic
nodes, ConJac gives remarkably rich deformations. For example,
although the front feet and the two ears only have one dynamic
node each, they undergo significant local nonlinear deformations
upon contact, as shown in Fig. 8 and the supplemental video.

5 CONCLUSION

ConJac is a new reduced coordinate approach based on condensa-
tion. Unlike previous work, we apply condensation at the velocity
level by defining a mapping that expresses the velocities of qua-
sistatic DOFs as a linear function of the dynamic DOFs. Compared
to Vanilla (the standard, full FE solution), ConJac remains stable
at large time steps and exhibits highly dynamic motion with less
numerical damping. Furthermore, ConJac gives the exact same
configuration as Vanilla once the static state is reached. To demon-
strate ConJac’s versatility, we have shown examples involving: a
wide range of materials, anisotropy and heterogeneity, topology
changes, and integration with rigid body dynamics.

5.1 Limitations & Future Work

For ConJac to maintain its advantages over Vanilla, the dynamic
nodes must not be too close to each other. In our Dragon and
Bunny examples, we manually placed the first few dynamic nodes
in strategic locations (e.g., dragon jaws, bunny ears), and the rest
were generated randomly. If two dynamic nodes were generated too
close to each other, we reran the random generator with a different
seed.

Although the stabilization term, bq in Eq. 12, works well to fight
the drift due to the linearization artifacts of the Jacobian, it still
cannot maintain the zero net-force state on the quasistatic nodes
during motion, causing visual artifacts especially when the motion
is large. Rather than taking a single Newton step, taking multiple
steps would produce better results when time steps are large. A
quasi-Newton approach, where only the force vector, and not the
stiffness matrix, is updated every step may yield a good balance
between convergence and performance.

In our current implementation, we explicitly form Jqd , which
requires 3nd solves with Kqq , where nd is the number of dynamic
nodes. When nd is small, the bottleneck is the factorization of Kqq ,
making ConJac and Vanilla nearly equivalent in terms of com-
putational cost. As we increase nd , the solves start to become the
bottleneck, making ConJac more and more expensive compared to

Vanilla. However, as shown in §4, ConJac retains important dy-
namics even with few dynamic nodes. An exciting avenue of future
work is to follow the work of Mitchell et al. [2016] to decompose
the object into domains, which would allow ConJac to scale up
to a very large mesh, since then the factorizations of Kqq can be
computed per-domain. However, obtaining good multi-threaded
performance would still be a major challenge, requiring careful
tuning of domain sizes and topology.

Scaling ConJac to very large meshes would require an iterative
approach, since the factorization of Kqq may not fit into memory.
This is non-trivial for the same reason above—the number of RHS
vectors is 3nd where nd is the number of dynamic nodes. One
approach to resolve this issue is the block Krylov method [O’Leary
1980], which allows the solver to share information across multiple
RHS. However, we would still need to limit nd to be relatively small
to remain competitive.

An important limitation is that frictional impulses acting on
quasistatic nodes cannot be accurately handled, since these nodes
are not DOFs, and so their frictional impulses can only be satisfied
in a least squares sense. This is, however, a limitation common to
all reduced coordinate approaches. Therefore, our approach is most
suitable when the effects of friction are not too large.

We have found experimentally that ConJac does not work well
for very soft objects, due to severe linearization artifacts. For sim-
ilar reasons, ConJac cannot handle extremely fast rotational mo-
tion. For these types of simulations, we may need to run Newton’s
method to convergence, rather than using the linearly implicit Euler
scheme.

ConJac can suffer from locking artifacts with hard constraints
if these constraints are applied to quasistatic nodes. In such cases,
an averaged or softened constraint will need to be applied, or new
dynamic nodes must be inserted [Andrews et al. 2017; Bergou et al.
2007; Tournier et al. 2015].

Finally, we are interested in exploring adaptive time step integra-
tors, such as Runge-Kutta-Fehlberg or MATLAB’s ode45 [Fehlberg
1969; Shampine and Reichelt 1997]. Given ConJac’s stability at
large time steps even with an explicit integrator, these adaptive
methods have the potential to reduce the number of total time steps
substantially.
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