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Abstract

Texture is an essential feature in modeling the appearance of ob-
jects and is instrumental in making virtual objects appear interesting
and/or realistic. Unfortunately, obtaining textures is a labor intensive
task requiring parameter tuning for procedural methods or careful pho-
tography and post-processing for natural images. Many texture syn-
thesis techniques have been developed to generate textures of arbitrary
spatial extent, but these techniques require the user to first produce
an exemplar consisting solely of the desired texture. We present a fast
method using diffusion manifolds to locate textures in unconstrained
photographs, and extract exemplar tiles. The method requires the user
to only specify a single point within the image containing the desired
texture and the scale of the desired texture. The user may tune the
result using simple interactions. The method is non-local, in the sense
that the desired texture does not have to appear in a single contiguous
region in the source image. Supplemental material and an interactive
demonstration is available from the paper’s companion website [1].

Figure 1: A photograph, sample, tiles extracted from the photograph and
texture synthesis from the texture tile sets.
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1 Introduction

The ability to model visual textures is essential in any computer graphics
modeling system. Yet preparing textures is still a labor intensive task. In
current practice users obtain textures by tuning parameters in procedural
models [2] or by using textures from prepared collections, either commercial
or free [3]. With procedural textures, in addition to the effort required to
set parameters, there is no guarantee that a particular model is capable of
representing a desired texture. With prepared texture collections, the user
has a limited choice and may either have to pay a fee or be restricted by
intellectual property concerns in subsequent use of the content.

One approach to allow users to create their own textures has been the
development of Markov Random Field (MRF) techniques which generate
textures of arbitrary extent from a small patch texture [4]. This patch, called
an exemplar, is then used as the input of a texture synthesis algorithm to
create an image of the texture with the required size.

This process fails when a source image contains details other than the
single desired texture. While there has been some work done removing
regions of undesired content within an image dominated by one texture [5],
we know of no automatic method of extracting a texture exemplar from an
arbitrary natural photograph without extensive user input. The difficulty of
preparing exemplars is a barrier to the use of texture synthesis algorithms.

In this paper we simplify the process of preparing a texture exemplar by
providing a method that automatically extracts a desired texture from an
image using minimal and intuitive user input. Our technique is based on
heat diffusion on a graph, inspired by diffusion manifolds [6].

We achieve orders of magnitude faster texture extraction by focusing
only on the texture specified by the user, and by representing a texture
tile with a fixed-size feature vector. Our primary output is the collection of
texture tiles. The tiles can then be used by any patch-based MRF technique
to generate a texture of arbitrary extent.

Our technique is used in a system with a simple interface. In the system
the user specifies the scale of the texture of interest within the source image.
After a short (on the order of seconds) preprocess, the user can generate
texture tiles interactively by clicking on a point in the source image. The set
of tiles can be refined interactively, if desired, by selecting additional points,
rejecting tiles, and adjusting a single parameter. A texture of arbitrary
extent can be generated from these tiles using any of a variety of a Markov
random field (MRF) techniques. The final result of this process can be seen
in Figure 1.
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Specifically, our contributions are:

• a novel click and slider based interface for easy texture selection.

• a texture extraction algorithm that is orders of magnitude faster than
previous methods.

• an examination of several different feature spaces that can be used in
conjunction with our algorithm.

2 Related Work

Our work serves as a technique that is a preprocess for existing texture
synthesis techniques. Our technique uses the idea of diffusion distance man-
ifolds to identify homogeneous texture regions. We analyze previous work
in this area, and identify how this work can be modified to achieve orders
of magnitude speed-up, thus facilitating an interactive texture extraction
system.

2.1 Texture Synthesis

Several techniques for texture synthesis from image exemplars appeared in
computer graphics in the 1990’s, including Heeger et. al. [7] and De Bonet
et. al. [8]. The last decade has seen an explosion in texture synthesis algo-
rithms Wei et al. [4] provide an overview of recent advances. In particular
there have been remarkable strides in MRF-based methods.

Some work has been done to improve an existing exemplar. The Inverse
Texture Synthesis (ITS) technique [9] starts with a globally varying texture
image and accompanying control map and produces a more compact exem-
plar. Unlike the problem considered here, ITS does not extract an exemplar
from an unconstrained natural image.

Eisenacher et al. [10] present a method for extracting textures from
images, even to remove the effects of non-planar and affine transformed
surfaces. However, their technique required a large amount of user input
to locate the textures. Our work is focused on minimizing the necessity for
that user interaction.

2.2 Diffusion Distance Manifolds

Manifolds constructed using diffusion distances between nodes is a robust
classification technique [6]. A diffusion manifold measures how many dif-
ferent paths “heat” can use to progress from one point to another. This
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Figure 2: An example of using a heat diffusion to classify points. Each dot
represents a feature in a 2D feature space. While the geodesic distances from
A to B and A to C are similar, A is closer to point B than C in diffusion
distance. This can be seen by the number of paths from A to B; three of
which are shown.

leads to a classification that is robust in the presence of noise, as incorrectly
placed points change only a few paths.

A manifold is created by forming a weighted graph between nodes rep-
resenting feature points. An edge is created between each pair of nodes
and given a weight of e−||xi−xj ||

2/ε2 where ||xi − xj || is the Euclidean dis-
tance between the two feature points and ε is a constant. Each node can
be thought of as a location where heat can rest, and the value of each edge
can be thought of as the “conductance” of heat from one node to another.
Each node also has an edge, with weight 1, to itself. Finely, this graph is
normalized so that heat is conserved using the formula (where W̃i,j is the
normalized graph weights, and Wi,j are the normalized weights)
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Wi,j =
W̃i,j
n∑
i=1

W̃i,j

Figure 2 illustrates the concept of diffusion distance. The geodesic dis-
tance within the manifold from A to C is a bit shorter than the distance from
A to B. However, there are many more possible paths from A to B within
the manifold, making the diffusion distance from A to B much shorter.

Diffusion distance is measured using heat diffusion on the graph. Some
units of heat are placed at a starting node and the heat is allowed to spread.
At each step, the heat spreads out across the edges, distributed proportion-
ately to the weight of each edge. More formally, if Wi,j is the weight between
i and j and ht(xi) is the heat at i at time t then the heat propagates by the
heat equation

h(t+1)(xi) =
∑
j

Wj,ih
t(xj) (1)

Define hti(xj) as the amount of heat on node j at time t if the initial
distribution consists of a single unit of heat at node i. The diffusion distance
on the manifold is formally defined by dt(i, j) =

∑
k(h

t
i(xk)− htj(xk))2.

If the application does not need a measure that is strictly a metric, the
function hti itself tends to provide a good objective function for determining
how ’close’ a node is to i. We will use this approach here; that is we will
use graph diffusion, not the diffusion distance. This has a large performance
benefit, as methods that use the actual diffusion distance tend to need an
iterative eigenvector solver.

We describe a few of hti’s relevant properties. First, the amount of heat
is conserved, or

∑
k(h

t
i(xk)) is constant. Accordingly, hti(xk) is interpreted

as the probability of heat being transported from node i to node k in t steps.
Large values of hti(xk) indicate that node k is ”closer” to node i. hti(xk) can
be visualised by arbitrary scaling the values and embedding it in a grayscale
image, or ”heat map.”

In recent work Farbman et al. [11] use diffusion maps for classifying im-
ages regions to make editing tools sensitive to edges. The focus is on editing
the original image, not extracting texture information. In addition their
use of diffusion maps differs from the method we present here in two key
ways. First, their algorithm involves complex linear algebra while ours iter-
ates a simple difference equation (Equation 1), or equivalently, just a simple
matrix-vector multiplication. Second, our feature set uses information from
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multiple scales which takes into account information in a neighborhood of a
pixel, while their feature set only uses the color of individual pixels. Since
we are identifying texture tiles, rather than specific edges to limit editing
operations, our application does not have to be as precise in its classification.

2.3 Dominant Texture Detection

Lu et al. [5] used a manifold built with diffusion distances to detect images
that were overwhelmingly covered, or dominated, by a single texture. In
particular, they used hti(xj) to decide if two tiles centered at pixels i and
j belong to the same texture. They were then able to mask the parts of
the images that were not part of that dominant texture, allowing the tex-
ture to be used as an exemplar. Lu et al. [12] subsequently conducted
a psychophysical test to determine if the dominant textures they detected
matched users’ expectations for extracted texture. The study suggested
that their dominant texture detection method based on diffusion distances
performed better than other approaches, including normalized-cut texture
segmentation [13]. Their work was the original inspiration for our method.
However, we present a substantially modified, more efficient algorithm and
implementation for extracting texture from arbitrary images rather than
images dominated by a single texture.

First, assuming that the image was dominated by the texture of interest,
Lu et al. began with a Fourier analysis to determine the appropriate texture
tile size. In our method, we replace this analysis with a simple interface that
allows the user to specify the scale and a sample location of the texture of
interest in an image that may contain multiple texture regions.

Next, Lu et al. represents a texture tile as a vector of length n2 for a tile
of n× n pixels. This results in n2 calculations to compare each pair of tiles
to determine the edge weights. In our work we replace this time consuming
scale dependent representation with a feature vector that is independent of
tile size. There are many possible feature vectors that many be used, and
we experimentally compare several different candidates to find an effective
one.

Lu et al.’s [5] method continues then to find the values hti(xj) that ap-
proximate the distance between tiles i and j. To reduce the memory required
for this process, an Approximate Nearest Neighbor (ANN) algorithm was
used to find a sub-graph that approximates the diffusion property of the
original manifold, in place of the graph relating all tiles. In our method, we
also use ANN to simplify the process. We make a major improvement over
Lu et al.’s method in that we do not estimate the distances between all tile
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pairs. We exploit the fact that we know the location of a texture tile the
user is interested in, and find the estimated distances only to that tile. This
reduce the calculation from being quadratic in the number of tiles to linear.

3 The Texture Exemplar Pipeline

Our method extracts textures from images in the following steps:

1. The user specifies the scale of the desired texture using a slider with
immediate visual feedback.

2. The image is divided into overlapping tiles and a size-independent
feature vector is computed for each tile.

3. A KNN graph is computed for the tiles.

4. The user selects a point in the image containing the desired texture.

5. The system selects tiles to extract based on the heat distances from
each tile to the selected tile.

6. If the user desires, the user specifies additional good and bad points or
rejects tiles. The system uses this information to refine the extracted
tiles in real time.

7. A texture synthesis algorithm is run in the background. As it pro-
gresses the user is shown intermediate results, allowing the user to
quickly evaluate the resulting texture.

Figure 3 outlines this pipeline. A video of the process is provided as
supplemental material [1].

3.1 Defining Texture Scale

A natural image frequently contains multiple textures at many spatial scales.
This is an unavoidable problem, as many textures have details that them-
selves are made up of textures. For example, a brick wall contains a texture
that represents the wall pattern and each brick itself has a brick texture.
For these situations some sort of user interaction is needed to inform the
algorithm which texture scale the user desires.

To solve this problem we present the user with an interface (see Figure 4)
with a slider that adjusts the scale parameter. As the parameter is changed,
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the user is shown a blurred version of the image. This is done by dividing
the image into tiles, then replacing each with its average color.

The user is asked to find a scale where the details of the texture are no
longer visible. Equivalently, they are asked to identify the level where the
desired texture tiles first appear as single color pixels.

Figure 5 demonstrates the effect of analyzing the image at different
scales. Larger scales include details of the brick wall, while smaller scales
are mostly limited to the details of the individual bricks.

3.2 The Diffusion Graph

We begin constructing the graph by dividing the image into overlapping
tiles. We then create a feature for each of the tiles (as discussed in the
next section) and then create a k-nearest neighbor (KNN), or approximate
nearest neighbor, graph based on the features. In our implementation, we
fix k at 128. When the feature space has less then 16 components we use the
ANN Library [14] to find the approximate nearest neighbors to an accuracy
of 1%. When there are 16 or more components in the feature vector we
switch to a brute force GPU implementation to calulate the exact KNN.

We are then able to create a diffusion matrix, W , as follows. First, we
compute ε, the root mean square of the distance between each node and the

its nearest neighbor, that is ε =

√
1
n

n∑
i=1
||xi − xnearest(i)||2. We then create

a normalized matrix with the formula

W̃i,j =

e−
||xi−xj ||

2

2ε2 xi and xj are neighbors

0 o.w.

and finally create a normalized diffusion matrix by the standard formula

Wi,j =
W̃i,j
n∑
i=1

W̃i,j

chosen to conserve energy.

3.3 Identifying Texture Tiles

Once the manifold is created, it can be used to select texture tiles on the
fly. By focusing on the user’s selection, rather than trying to classify all
textures in the image into classes as done in previous work, we introduce
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(a)

(b)

Figure 4: Examples of the scale selection interface. The user is able to
adjust the slider on the bottom of the window which changes the blur of the
figure on the right. When a smaller scale is selected more details are visible
(a). When a larger scale is selected, fewer details are visible (b). Users are
instructed to select a scale in which the details of the texture are not visible
but the location of the texture is distinguishable from other locations.
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(a)

(b) (c)

Figure 5: Demonstration of the algorithm’s ability to work on multiple
scales. Both tile sets were created from the same image, but from different
scales. (a) is the original image, (b) is an image where we selected the scale
of the brick wall, while in (c) a smaller scale was chosen to get the rough
surface of the bricks themselves.
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another major efficiency. Our calculations compare each texture tile to the
selected tile only, rather than computing distances between all tiles pairwise.

Specifically, when the user clicks on a point, i, within the image hi(xj)
is calculated for the entire manifold. This is done by setting the value of the
node i to 1 and setting the value of the rest of the nodes to 0 then iterating
Equation 1:

h(t+1)(xi) =
∑
j

Wi,jh
t(xj)

It is important to note that since Wi,j is sparse, the complexity of the
above equation grows linearly with the number of tiles making the diffusion
tractable even for large images.

Once the values of hi(xj) are determined, tiles corresponding to the
selected texture are found by simply taking a pre-set number of tiles with a
maximum value of hi(xj).

3.4 Refinement

The set of selected tiles are displayed for the user. In cases where a tile
appears to include some unwanted feature, the user can provide input to the
algorithm by clicking on those tiles. This in turn modifies the initial heat
map by decreasing the initial value of hi(xj) corresponding to the selected
tile by 1. This makes the tile a “sink” for heat, making it and similar tiles
less likely to appear on the output. The user can also create sinks by right
clicking on the image. However, care must be taken as too many sinks can
cause the system to ignore the good tile.

Alternatively, the user can add more source points to the diffusion pro-
cess by clicking on additional points in the image. This in turn increments
the initial value of hi(xj) corresponding to the selected tile by 1.

Finally, the set can be adjusted by adjusting the value of steps t used in
iterating the heat equation.

The user does not need to understand the mathematical meaning of
these interactions. The updated results appear quickly, and the user simply
adjusts the parameters to taste. It should be noted that experimentally the
original result is often satisfactory and adjustments are not needed.

3.5 Exemplar Generation

It is possible to modify most MRF algorithms to use this tile set as an
exemplar for generating a texture of arbitrary extent, instead of a single
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image. MRF texture synthesis algorithms are now extremely well studied,
and many algorithms exist for many different possible situations [9].

In our implementation, we chose to use a basic image quilting technique
[15]. Each time the tile set is changed the quilting algorithm is spawned
as a background process. As the synthesis algorithm progresses, the user is
shown intermediate results. This allows for texture extraction in real time,
without needing to wait for the synthesis algorithm to complete.

4 Feature Space Selection

In this section we discuss a number of possible feature vectors that can be
used to characterize texture tiles, and describe an experiment we conducted
to evaluate them.

4.1 Types of Feature Vectors

There are an infinite number of possibilities for feature vectors. We experi-
mented with several fundamentally different feature spaces:

Trivial Vector Features The simplest was a modified ’trivial’ feature
space that was generated by scaling each tile image to a fixed 15× 15 pixel
image using Scikit Image’s resize function [16]. A feature vector is then
formed using these pixel values. This leads to a 15 ∗ 15 ∗ 3 = 675 dimension
space.

Moment Features The next feature space was a normalized set of
moments of the pixel color distribution within the tile. That is, if µci is the
ith moment of the cth of the three color components, then we chose some
cutoff n and used a feature vector with 3n components

1

i!
µci 1 ≤ i ≤ n

In particular we looked at moments with a cutoffs of n equal to 2 and to 5.
Autocorrelation Features We looked at autocorrelation based feature

space, by calculating the autocorrelation function by the formula

<
(
FFT−1

{
FFT {I}FFT {I}

})
where I is the image, FFT is the two dimensional discreet Fourier transform
and < is the real part. We then create a fixed size 675 element feature vector
by re-sizing the result in the same manner as the trivial feature space.
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Histogram of Gradient (HOG) Features Finally, we used a his-
togram of gradient (HOG) feature vector as an off-the-shelf test. In par-
ticular, we used Scikit Image’s HOG function [16] with 4 orientations and
3× 3 cells per block. We chose the pixels per cell by dividing the width and
height of the image by 4.

Our goal was not to find the “best” feature space, nor was it to do a
complete census of all possible feature spaces. Rather, we wanted to examine
the effect that choosing a feature space had on the outcome and to show
that a given space was adequate for our purpose.

4.2 Feature Vector Evaluation

To develop an unbiased collection of test data for evaluation, we had a naive
user of our system select a set of natural images, and specify the size and
scale of the desired texture. Then we had a group of 8 graphics students,
knowledgeable in the concept of textures and their use in computer graph-
ics, evaluate the quality of texture tiles extracted using different candidate
feature vectors.

We gave a naive user minimal training on how to use a simplified version
of our system. By “naive”, we mean a person who had not been working
in our laboratory, was not involved in the development of the software, and
was not aware of the algorithms used. The simplified version did not allow
for refinement but generated tile sets using all of the above feature spaces.
We then instructed the naive user to find images licensed with the Creative
Common’s attribution license and use the system to extract a single texture
from them by specifying a scale and an image location. In total the user
selected 19 images and extracted textures from them

For each of those 19 images, we twice extracted 16 tiles for each of the
5 feature spaces. This led to a total of 190 tile sets of 16 tiles. (NOTE: The
test images and tile sets are provided in supplemental material [1].) We then
used a web interface to display those tile sets to the knowledgeable graphics
students, as well as the tile in the location which the naive user originally
selected. The graphics students were asked to select tiles in the set that
were different from the selected tile. The students were given three options:
“Tiles Selected Above.”,“All Tiles are good”,“No tile is good”. The system
would ensure that the user’s input was consistent. If the user selected “Tiles
Selected Above.” the system would insure at least one tile was chosen. If
“All Tiles are good” was selected the system would insure that no tiles were
selected. Finally, if the user selected “No tile is good” the system would
ensure that either all tiles were chosen, or no tiles were chosen.
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Figure 6: The average number of textures rejected by our graphics student
evaluators. Each line represents the responses from a different person. While
different tastes varied, the 2-moments and 5-moments feature space were
preferred by all users to the other feature spaces. This graph also shows the
level of success of our method without any user refinement.

The graphics students who evaluated the tiles were not able to see the
images before the evaluation. They were shown the tile sets in a random
order, without knowing which feature space generated each tile set.

Figure 6 shows the result of the evaluation process. The moment based
feature spaces were clearly superior to the others for this case. The 5-
moment space (which requires more computation) was not clearly superior
to the 2-moment space. We therefore choose to use the 2-moment feature
space and use it in the rest of the paper, unless otherwise noted.

5 Results

Figure 7 shows results of our pipeline produced by the naive user of the
system in the experiment described in Section 4. All these results were gen-
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Figure 7: Examples of tiles selected using our method. From left to right:
original image, heat map, tiles, generated texture using a basic image quilt-
ing technique.
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Figure 8: The time complexity of our algorithm. The line shows liner growth
with 3.16 seconds per megapixel and a fix cost of 11 seconds. However, this
time can be effected by many other parameters.

erated without refinement; only the scale and starting points were selected.
The images selected by the user ranged in size from 0.3 to 45 megapixels.

Running on a workstation with a Intel Xeon W3565 CPU and 12 GB of
Memory, our algorithm took between 9 and 157 seconds, not including user
interactions. Figure 8 shows that the time complexity of the algorithm is
approximately linear with the size of the image.

Our method is dramatically faster than that of Lu et al. [5], allowing
it to be used interactively. Lu et al. reported that it took 18 minutes to
create a texture for a 11,750 pixel image (i.e. 0.011 megapixels). It took
our system, running on a laptop, 22 seconds to create a texture from the
same image, including all user interaction. We show the image results
in Figure 9. The previous method produces a single binary mask, while our
method produces a multivalued mask (the heat map).

It should be noted that this speedup is still present when using vintage
hardware where our algorithm can process images of comparable size in
under 10 seconds and megapixel images in 38 seconds.

The performance of our implementation could become unsatisfactory for
interactive use if extremely large manifolds were needed. This tends not to
be a problem in practice, as such large manifolds would occur for cases where
texture tiles each cover a small number of pixels in megapixel images. If the

17



(a) (b) (c)

Figure 9: (a) Original image (b) mask from Lu et al. [5] (c) Heat map used
to identify tiles in our method

Figure 10: An example of a failure case.

size of the manifold does become an issue we refer the reader to Farbman et
al. [11] which discusses sampling when creating a manifold.

Unfortunately, there are a few specific cases that may cause our algo-
rithm to fail:

1. If a texture is relatively sparse in an image.

2. If two textures within an image are extremely similar.

3. If a texture is directional and the image has multiple rotated repre-
sentations of that texture.

4. If an image contains multiple scales of a texture.

Often those failures can be easy mitigated by user refinement.
In practice, problems 3 and 4 tend to be the most problematic. In

particular they often make extracting structured textures difficult when the
texture is on a plane oblique to the plane of the photograph. Eisenacher et
al. [10] discuss this problem and a solution.

Figure 10 shows an example of a failure case. Very little of the texture
is visible in the image, and different orientations are present. Even such
failure cases may produce usable textures.
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(a)

Figure 11: Example of application: The first two rows of photographs are
used as sources for texture extraction. The extracted textures are mapped
on 3D models to render a synthetic scene in the bottom of the figure.

In Figure 11 we model a novel scene using the textures our pipeline
extracted from photographs.

6 Future Work and Conclusion

This paper demonstrates that diffusion distance manifolds can be used at
interactive rates to distinguish textures in arbitrary images or to generate
texture exemplars for texture synthesis algorithms. The method is non-local
and able to accumulate information from a large number of image regions.
In fact, our implementation can combine patches from multiple images and
is only limited by computer memory.

There are many possible extensions to this algorithm. It would be inter-
esting to investigate even more possible feature sets for textures. In partic-
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ular, adding directional sensitive features and/or statistical moments other
than the image variance may help alleviate problem cases. Furthermore,
preliminary results indicate that artificially decreasing the edge weights be-
tween a tile and the tiles neighboring it within the image may improve the
results. Finally, it would be interesting to combine manifolds from multiple
pyramid levels. This could lead to automatic detection of problematic cases
and the creation of multiscale textures.

The ability to extract texture exemplars from unconstrained photographs
provides an important new capability for computer graphics content cre-
ation. Users can create textures from their own personal photograph collec-
tions. This allows more creative control in the production of content, and
allows the user to have complete control of the IP rights for their content.

Photo Credits

The photos from Figures 3, 4, and 5 are by Elliot Lockerman and used with
permission.

The photo credits from Figure 7 are listed below, from top to bottom.

1. Image by Flicker user Micky**, under the Creative Common Attribu-
tion 2.0 Generic License

2. Image by Flicker user Nina Matthews, under the Creative Common
Attribution 2.0 Generic License

3. Image by Flicker user Todd Ryburn, under the Creative Common At-
tribution 2.0 Generic License

4. Image by Flicker user mikebaird, under the Creative Common Attri-
bution 2.0 Generic License

The photo in Figure 9 is from Lu et al. [5].
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