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Abstract
The Baraff-Witkin [BW98] model has been a popular formulation for cloth for 20 years. However, its relationship to the finite
element method (FEM) has always been unclear, because the model resists being written as an isotropic, hyperelastic strain
energy. In this paper, we show that this is because the Baraff-Witkin model is actually a coupled anisotropic strain energy. We
show that its stretching term approximates the isotropic As-Rigid-As-Possible (ARAP) energy, and its shearing term is a cross-
fiber coupling energy common in biomechanics. While it has been known empirically for some time that the model can produce
indefinite force Jacobians, the conditions under which they occur has never been clear. Our formulation enables a complete
eigenanalysis that precisely characterizes exactly when indefiniteness occurs, and leads to fast, analytic, semi-positive-definite
projection methods. Finally, our analysis suggests a generalized Baraff-Witkin energy with non-orthogonal warp and weft
directions.

1. Introduction

The Baraff-Witkin model for cloth [BW98] has been widely used
in film for almost 20 years. First appearing on-screen in Monsters,
Inc. in 2001, it has been the workhorse cloth model for every sub-
sequent Pixar film [Ebe18], and is widely used at Walt Disney An-
imation Studios (see e.g. [TJM15]).

Despite the popularity and ubiquity of this model, ambiguity
persists around some of its main features. Most contemporary
solid mechanics simulations in computer graphics rely on the fi-
nite element method (FEM) [SGK18], position based dynamics
[MHHR07], or a spring-mass formulation [CK02]. However, the
Baraff-Witkin model inhabits a liminal space in between. Much like
position based dynamics (which it arguably inspired), the model is
written in terms of constraint functions. At the same time, the con-
straint functions appear very spring-mass-like, even though the for-
mulation is face-based, not edge-based. Finally, the model forms
an FEM-like globally implicit system, even though finite element
shape functions and their derivatives are never explicitly invoked.

In this paper, we show that the Baraff-Witkin model can be un-
derstood entirely in terms of FEM. The first step in such an analysis
is usually to write the model as an isotropic, hyperelastic strain en-
ergy [BW08]. However, it has never been clear how to do this for
the Baraff-Witkin model. We show that an isotropic formulation is
impossible, but that a coupled anisotropic strain energy can be both
formulated and analyzed using a recent approach [KDGI19].

Using this energy, we are able to establish that the Baraff-Witkin
stretching term is an anisotropic approximation of the isotropic
As-Rigid-As-Possible (ARAP) energy from geometry processing
[SA07], which is itself a spring-mass-like energy. Subsequently,
we show that the Baraff-Witkin shearing term corresponds directly

Figure 1: Left: Results using our finite element formulation of
Baraff-Witkin cloth. Right: Same scene, but with ARAP stretching.
The ARAP results appear more rubber-like, as higher frequency
wrinkling is slightly suppressed, and a characteristic low frequency
appears down the middle. In both, k = 250 and kθ = 1e−8.

to the cross-fiber shearing term that commonly appears in muscles
in biomechanics [CDH01, BPD05].

Finally, we use this energy formulation to characterize the ex-
act conditions under which the Baraff-Witkin model produces in-
definite systems. This indefiniteness is not mentioned in the origi-
nal paper [BW98], but has been known empirically for some time
(see e.g. §3.1 in [CK02] or [MFG09]). We perform a novel eige-
nanalysis that quantitatively establishes the exact conditions under
which indefiniteness occurs using the Bunch-Nielsen-Sorensen for-
mula [BNS78]. We obtain closed-form, analytic expressions for the
eigenvalues and eigenvectors of each triangle, which allow us to
construct a fast, simple, and analytic methods for projecting the
systems back to semi-positive-definiteness. We demonstrate the ef-
ficacy of our formulation in a variety of scenarios (Figs. 1,2,4).
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In summary, our contributions are:

• An anisotropic FEM energy for the Baraff-Witkin cloth model
• A complete eigenanalysis of the energy, including a novel ap-

proach using the Bunch-Nielsen-Sorensen formula
• An analysis showing that the energy is an anisotropic approxi-

mation of the isotropic ARAP energy
• A fast, analytic semi-positive-definiteness projection method.
• A generalized Baraff-Witkin energy with non-orthogonal warp

and weft directions.

2. Related Works

The original Baraff and Witkin [BW98] paper is cited for many rea-
sons, including its constraint-based energies, its popularization of
preconditioned conjugate gradients (PCG), and its use of backward
Euler. In this work, we will focus on the constitutive model it uses
for in-plane stretching and shearing.

Many such models have been used in the past, such as
mass-spring [Pro95, VT00, CK02, BFA02], St. Venant Kirch-
hoff (StVK) [MMO16], Kirchhoff-Love [CTT17, CSvRV18], co-
rotational [EKS03], piecewise linear [WOR11] and linear or-
thotropic models [VMTF09, LB15]. Additional non-linear con-
straints can be incorporated using strain limiting [TPS09], where
the authors also closely examine the role of shearing. An in-
depth comparison, in the context of data-driven simulation, be-
tween spring-mass, Baraff-Witkin, and FEM-based StVK models is
also available [MBT∗12]. Of all these works, the orthotropic model
is the closest to the results we present here, though our invariant-
based analysis also applies to more general anisotropic (Appendix
B) and non-linear models.

The Baraff-Witkin model was not originally presented as
an FEM model, resulting in many works over the last two
decades† mistakenly classifying it as a mass-spring model. Its
constraint-based formulation also served as inspiration for position-
based [MHHR07, BMO∗14] and projective dynamics [BML∗14,
NOB16], which has further muddied attempts at classification. As
part of this work, we hope to certify Baraff-Witkin as an FEM
model and dispel any lingering ambiguity.

The effectiveness of PCG in the original paper [BW98] is con-
tingent on the underlying energies producing semi-positive-definite
systems, but in the years since, they have been observed to pro-
duce indefinite systems [CK02, MFG09]. The issue can be broadly
addressed by applying the Gauss-Newton approximation, which
drops the second-order derivative from the force gradient [CK02],
or more finely by filtering the eigenvalues at each quadrature point
[TSIF05]. However, prior filtering methods only apply to isotropic
Cauchy-Green [TSIF05] or transversely isotropic [KDGI19] ener-
gies. Neither approach is sufficient for the Baraff-Witkin model, so
we present a novel cross-fiber analysis (§4.3) that allows filtering
to be applied analytically.

† Our original draft cited four such erroneous works, but we removed them
upon revision. Instead, let us all focus on correctly classifying the model in
the future.

3. The Baraff-Witkin Energies

3.1. The Original Formulation

We will begin with a brief overview of the original Baraff-Witkin
formulation, following the notation of the original [BW98] as
closely as possible. Once the preliminaries are established, we will
show how to cast these into a finite element formulation.

The Baraff-Witkin approach uses a function w(u,v)∈<3 to map
from 2D material-space to 3D world-space. Deformation is then
measured using the gradient of w(u,v), denoted

wu =
∂w(u,v)

∂u
∈ <3 wv =

∂w(u,v)
∂v

∈ <3. (1)

The in-plane (u,v) coordinates and the current world-space tri-
angle vertices xi, j,k are combined to obtain wu and wv thusly: wu wv

 =

 x j−xi xk−xi

[u j−ui uk−ui
v j− vi vk− vi

]−1

(2)

=

 ∆x1 ∆x2

[∆u1 ∆u2
∆v1 ∆v2

]−1

∈ <3×2. (3)

Baraff and Witkin use this gradient to define stretching and shearing
energies that model in-plane forces. These are respectively:

Estretch = a
[
(‖wu‖−bu)

2 +(‖wv‖−bv)
2
]

(4)

Eshear = a
(

w>u wv

)2
. (5)

Above, ‖ · ‖ denotes the 2-norm, a is the triangle area, and bu and
bv are shrink/stretch parameters that are usually set to one.

3.2. No Isotropic FEM Formulation Exists

FEM practitioners will immediately see that
[
wu wv

]
corre-

sponds to the deformation gradient F ∈ <3×2, but that shape func-
tion derivatives, which usually appear in a change-of-variables ten-
sor ∂F

∂x , are absent. Instead, forces are computed using positional

derivatives, f =−k ∂Estretch
∂x , where k is a stiffness constant.

The usual FEM process is to formulate Ψ, a strain energy density
akin to E∗, and compute forces using f = −ka ∂Ψ

∂x . (Again, k is a
stiffness and a is area.) However, Ψ is usually written in terms of F
instead of x, so we initially compute the first Piola-Kirchhoff tensor
(PK1) ∂Ψ

∂F , and then convert it to ∂Ψ

∂x using a change of variables,

f =−ka
∂Ψ

∂x
=−ka

∂F
∂x

:
∂Ψ

∂F
, (6)

where : is a double-contraction because ∂F
∂x ∈<

3×2×9 is a 3rd-order
tensor. In this way, the ∂F

∂x shape function derivatives are introduced
into the computation.

However, it is not obvious how to formulate a Ψ for Estretch and
Eshear, because they are written with respect to wu and wv, which
are the columns of F. It is well-known [BW08] that all isotropic
FEM energies can be written using the Cauchy-Green invariants,

IC = tr(F>F) IIC = tr(FF>F>F) IIIC = det(F>F) (7)

c© 2020 The Author(s)
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or a recent set of more general invariants [SGK19]:

I1 = tr(S) I2 = tr(S>S) I3 = det(S), (8)

where S denotes the stretch matrix from the polar decomposition
F = RS. However, the Baraff-Witkin energies cannot be written
using these, because all of these invariants entangle the columns
of F. The column-wise separation required by Estretch and Eshear
is not supported. These invariants encompass all possible isotropic
FEM energies, so we must conclude that it is impossible to write
the Baraff-Witkin model as an isotropic FEM energy.

3.3. An Anisotropic FEM Formulation Exists

Instead, we show that it is possible to write Estretch and Eshear as
anisotropic FEM energies. Such materials are common in biome-
chanics for modeling muscle fibers [CRF15], but here they will be
used to express woven fiber directions.

In addition to the isotropic invariants in Eqn. 8, there are also
anisotropic invariants [KDGI19]

I4(a) = a>Sa I5(a) = a>F>Fa, (9)

where a ∈ <2 is an anisotropy direction in 2D material-space.

Crucially, if we use the standard basis directions, au =
[
1 0

]>
and av =

[
0 1

]> in the I5 invariant, we obtain the exact column-
wise separation that was missing from the isotropic invariants. To
illustrate this, we label the columns of F as

F =

 f0 f1

 . (10)

Then, Fau = f0 and I5(au) = (Fau)
>Fau = ‖f0‖2, which corre-

sponds to ‖wu‖2. The ‖wu‖ term from Eqn. 4 can now be written
in invariant form as

√
I5(au). The full anisotropic FEM stretching

energy becomes:

Ψstretch =

[(√
I5(au)−bu

)2
+
(√

I5(av)−bv

)2
]
. (11)

We have dropped a because Ψ denotes an energy density, so the
area gets re-introduced by Eqn. 6.

To express Eshear, an additional cross-fiber invariant is needed:

I6(a,b) = a>F>Fb, (12)

where a 6= b in general. This invariant is important in biomechanics
[BPD05], but was discounted in recent graphics work [KDGI19]
because its visual relevance was unclear. While the relevance in 3D
solids may be subtle, we will see in §5 that it plays a critical role in
the qualitative behavior of cloth. Using this invariant, the shearing
energy can be written

Ψshear = I6(au,av)
2. (13)

We now have two expressions for Baraff-Witkin cloth, Eqns. 11
and 13, that are expressed entirely as invariant-based FEM ener-
gies. Using these, we can now establish connections to other FEM
energies (§3.4), and perform an eigenanalysis (§4) to better under-
stand their quantitative behavior.

3.4. Baraff-Witkin Stretching Approximates ARAP

We can show that Ψstretch is an anisotropic approximation of the
element-wise formulation of the As-Rigid-As-Possible (ARAP) en-
ergy [LZX∗08, CPSS10]:

ΨARAP = ‖F−R‖2
F . (14)

Expanding the Frobenius norm yields,

ΨARAP = I2−2I1 +2, (15)

where I2 and I1 are the invariants from Eqn. 8.

Performing a similar expansion of Ψstretch yields

Ψstretch = I5(u)
2 + I5(v)

2−2
(√

I5(u)+
√

I5(v)
)
+2 (16)

= I2−2
(√

I5(u)+
√

I5(v)
)
+2. (17)

The second line uses the identity I5(u)2 + I5(v)2 = ‖F‖2
F = I2, and

we have set bu = bv = 1 for this comparison.

Comparing Eqns. 15 and 17, the core approximation is clearly

I1 ≈
√

I5(au)+
√

I5(av). (18)

When U = V = I in the SVD F = UΣVT , this matches up to sign
change. The approximation I1 ≈

√
I5(au)+

√
I5(av) becomes

σ0 +σ1 ≈ |σ0|+ |σ1|, (19)

where σ0 and σ1 are the singular values of F. For shells, a negative
singular value corresponds to out-of-plane π-rotation, so the match
in this case is exact for all practical purposes.

Therefore, the Baraff-Witkin stretching energy is an ARAP-like
energy that principally resists stretching in the au and av directions
instead of the time-varying principal directions that arise from the
SVD of F. This model is consistent with cloth, which is persistently
stiffer along the threads in the orthogonal warp and weft directions.
In §5, we will examine the visual differences between the ARAP
and Baraff-Witkin energies, and obtain some novel qualitative be-
haviors by relaxing the orthogonality assumption.

4. An Eigenanalysis of Baraff-Witkin Cloth

4.1. Analysis Preliminaries

We will now show how to obtain closed-form, analytic expressions
for the eigensystems of Ψstretch and Ψshear, which we can then use
to determine when the energies become indefinite.

As shown in previous works [SGK19, KDGI19], analyzing the
energy Hessian ∂Ψ

2/∂F2 in lieu of the force Jacobian can reveal sim-
ple expressions for the eigensystems of various energies. The Hes-
sian can later be converted back to the force Jacobians using

∂f
∂x

= a ·vec
(

∂F
∂x

)T

vec

(
∂

2
Ψ

∂F2

)
vec
(

∂F
∂x

)T

, (20)

where vec(·) is a vectorization operator [GVL13,KDGI19] that flat-
tens higher-order tensors into 2nd-order matrices.

In the following, we will be making use of eigenmatrices. When
using the 4th-order tensor ∂

2
Ψ/∂F2, the usual eigenvalue problem

Aq = λq becomes ∂
2
Ψ/∂F2 : Q = λQ. Thus, in lieu of the usual

c© 2020 The Author(s)
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eigenvectors q, we obtain eigenmatrices Q. While the two formu-
lations are equivalent, we can perform decompositions such as the
SVD on Q to reveal structures that would be obscured by the vector
form q. In the following sections, we will present analytic eigen-
pairs of the form (λi,Qi), but the eigenmatrix can always be con-
verted back to an eigenvector by reordering the entries according to
q = vec(Q).

4.2. The Stretching Energy Can Definitely Go Indefinite

4.2.1. The Eigensystem of Baraff-Witkin Stretching

Since Ψstretch is the sum of I5-based energies, and au and av are
orthogonal, the six eigenpairs of its eigensystem can be obtained
by applying §4.2 from [KDGI19],

λ0 = 2 Q0 =
1
‖f0‖

 f0 03

 (21)

λ1,2 = 2

(
1− bu√

I5(au)

)
Q1,2 =

 vectors
orthogonal 03

to f0

 (22)

λ3 = 2 Q3 =
1
‖f1‖

 03 f1

 (23)

λ4,5 = 2

(
1− bv√

I5(av)

)
Q4,5 =

 vectors
03 orthogonal

to f1

 , (24)

where 03 ∈ <3 is a vector of zeros.

Four of the eigenpairs, Q1,2 and Q4,5, have repeated eigenval-
ues, and thus span two arbitrary, rank-2 subspaces. We have not
provided specific expressions for these eigenmatrices because they
will not be needed for semi-positive-definiteness projection.

Baraff-Witkin stretching becomes indefinite when either λ1,2 or
λ4,5 are negative, which occurs under the following conditions:√

I5(au)≤ bu or
√

I5(av)≤ bv. (25)

Qualitatively, the stretching term becomes indefinite whenever the
au or av directions undergo compression. The cloth enters a buck-
ling regime where multiple energetically equivalent solutions ex-
ist [CK02], so the loss of convexity at this configuration is physi-
cally consistent.

4.2.2. Semi-Positive-Definite Projection

We can define a fast semi-positive-definite projection by first writ-
ing the vectorized Hessian, vec

(
∂

2
Ψstretch/∂F2

)
= Hstretch, as follows,

Hstretch =2

[(
1− 1√

I5(au)

)
Hu +

1

I5(au)
3
2

f0f>0

]
+

2

[(
1− 1√

I5(av)

)
Hv +

1

I5(av)
3
2

f1f>1

]
,

where

Hu =

[
1 0
0 0

]
⊗ I3×3 Hv =

[
0 0
0 1

]
⊗ I3×3, (26)

and ⊗ is a Kronecker product. In the following, we will focus on
filtering out negative eigenvalues in the u direction from the first
line of Hstretch, but the same reasoning applies to the v direction.

The 2(1− 1/
√

I5(au))Hu term from Hstretch constructs a rank-3
subspace with all three non-zero eigenvalues pinned to λ0,1,2 =
2(1− bu/

√
I5(au)). Two of these can become negative, but the

2/I5(au)
3
2 f0f>0 rank-1 update bumps a single eigenvalue from this

subspace up to λ0 = 2. In the case where the u direction is under
compression, it is sufficient to zero out the Hu matrix, and compute
a modified rank-1 term, 2f0f>0 that still captures the λ0 = 2 term.
This approach is compact enough that we provide a complete C++
implementation in Appendix A.

This filter is similar to the Gauss-Newton approach of dropping
the Hu term [CK02]. However, that approach effectively clamps
the eigenvalue to λ0 = 1/I5(au)

3
2 , which is closer to zero. The overall

system then becomes both more poorly conditioned, and further
away from the true Hessian.

4.2.3. Relationship to the ARAP Eigensystem

Using a recent analysis [Pan20], we can construct the analytic
eigensystem for ARAP on a membrane, which is strikingly simi-
lar to Baraff-Witkin stretching. The first two eigenvalues are

λ
ARAP
0 = 2

(
1− 1

σ0

)
λ

ARAP
1 = 2

(
1− 1

σ1

)
, (27)

while the remaining four are

λ
ARAP
2 = 2

(
1− 2

σ0 +σ1

)
λ

ARAP
3,4,5 = 2. (28)

By setting bu = bv = 1 in Baraff-Witkin, and inserting the σ0 ≈√
I5(au) and σ1 ≈

√
I5(av) approximations, Eqns. 22 and 24 can

be brought into exact correspondence with Eqn. 27.

These correspond to the eigenvalues that can take on negative
values, and while they form a rank-4 subspace in the Baraff-Witkin
model (i.e. λ1,2,4,5 in Eqns. 22 and 24), they only form a rank-2
subspace in ARAP (λARAP

0,1 in Eqn. 27). The eigenvalue λ
ARAP
2 can

also become negative, but under stricter conditions: σ0 +σ1 < 1.
Thus, ARAP can have a most a rank-3 negative-definite subspace,
and is slightly more convex than Baraff-Witkin.

Finally, the λ
ARAP
2 eigenvalue has no equivalent in Baraff-Witkin

stretching, since the appearance of both singular values in an eigen-
value would correspond to a mixing of I5(au) and I5(av). But,
Ψstretch prohibits this by construction. The natural conclusion is
that Ψshear approximates this eigenpair, but as we will see next,
this is not the case.

4.3. The Shearing Energy Is Always Indefinite

4.3.1. The Eigensystem of I6(a,b)

Obtaining the eigensystem of Ψstretch was a straightforward appli-
cation of an existing analysis [KDGI19] of I5(a). Unfortunately, no
equivalent analysis exists for I6(a,b), so we must provide it here.

c© 2020 The Author(s)
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The PK1 and vectorized Hessian of I6(a,b) are as follows:

∂I6
∂F

= F
(

ab>+ba>
)

(29)

vec

(
∂

2I6
∂F2

)
=
(

ab>+ba>
)
⊗ I3×3. (30)

The main challenge in an invariant-based eigenanalysis is usually
locating a closed-form expression for the eigensystem of the invari-
ant’s Hessian, ∂

2I∗
∂F2 . In this case, the Hessian has a regular, sparse

structure, so the eigensystem is relatively straightforward:

Q0 =

 (a+b)>

0 0
0 0

 Q1 =

 0 0
(a+b)>

0 0

 Q2 =

 0 0
0 0
(a+b)>


Q3 =

 (a−b)>

0 0
0 0

 Q4 =

 0 0
(a−b)>

0 0

 Q5 =

 0 0
0 0
(a−b)>


λ0,1,2 = a>b+1 λ3,4,5 = a>b−1. (31)

If a and b are normalized and a 6= b, the last three eigenvalues are
always negative.

With an invariant’s eigensystem in hand, constructing the eigen-
system of an energy that uses it (e.g. Ψshear) is usually straightfor-
ward. The Hessian of the overall energy is a scaled and rank-one
updated version of the invariant’s Hessian,

vec

(
∂

2
Ψshear
∂F2

)
= 2I6H6 +2g6g>6 , (32)

where

g6 = vec
(

∂I6
∂F

)
H6 = vec

(
∂

2I6
∂F2

)
. (33)

This construction has been simple in previous work [KDGI19,
SGK18] because an invariant’s gradient and Hessian have always
been mutually orthogonal, i.e. H6g6 = 0. However, this assumption
no longer holds for I6(a,b), because a and b are arbitrary directions
that can produce non-zero projections onto the span of H6. Thus, a
new analysis is needed.

4.3.2. The Eigensystem of Baraff-Witkin Shearing

We perform a detailed, generalized analysis of shearing energies
in Appendix B, where we use the Bunch-Nielsen-Sorensen (BNS)
formulas [BNS78] to obtain closed-form expressions for the eigen-
system. The derivation is involved, and the final expressions un-
wieldy, but we will now show that they simplify considerably in
the Baraff-Witkin case.

Baraff-Witkin shearing corresponds to the case of a = au and
b = av. In this case, the eigenvalues from Eqn. 50 simplify to:

λ0 = I2 +
√

I2
2 +12 · I2

6 λ1,2 = I6 (34)

λ3 = I2−
√

I2
2 +12 · I2

6 λ4,5 =−I6. (35)

The eigenvectors from Eqn. 52 become:

Q0 = I6
∂

2I6
∂F2 :

∂I6
∂F

+λ0
∂I6
∂F

(36)

Q1,2 =


subspace of

 1 1
0 0
0 0

 0 0
1 1
0 0

 0 0
0 0
1 1


orthogonal to Q0

(37)

Q3 = I6
∂

2I6
∂f2 :

∂I6
∂f

+λ3
∂I6
∂f

(38)

Q4,5 =


subspace of

 1 −1
0 0
0 0

 0 0
1 −1
0 0

 0 0
0 0
1 −1


orthogonal to Q3

(39)

The shearing Hessian always has a rank-three negative-definite
subspace. Two eigenvalues are persistently negative: λ4,5 = −I6.

The third negative eigenvalue, λ3 = I2−
√

I2
2 +12 · I2

6 , comes clos-

est to positive when 12 · I2
6 = 0, but only yields λ3 = I2−

√
I2
2 = 0.

The subspace is still semi-negative-definite, so the Baraff-Witkin
shearing energy is always indefinite.

4.3.3. Semi-Positive-Definite Projection

We could compute the semi-positive-definite projection by explic-
itly constructing the positive eigenpairs and then summing their
outer products, but this would involve robustly orthogonalizing the
positive-definite subspace against Q0.

Instead, we can avoid orthogonalization entirely. The positive-
definite subspace from H6 is trivial to construct, T = 12×2⊗ I3×3,
where 12×2 is a matrix of ones. Using this, we instead zero out the
existing component in the vec(Q0) = q0 direction, and then add it
back, scaled by λ0. More explicitly:

T =

[
1 sign(I6)

sign(I6) 1

]
⊗ I3×3 (40)

H+
shear = ‖I6‖

(
T− 1
‖Tq0‖2

2
Tq0q>0 T>

)
+λ0q0q>0 . (41)

The sign(I6) and ‖I6‖ terms are included to handle the cases where
I6 < 0. The final semi-positive-definite version of the Baraff-Witkin
shearing Hessian is then H+

shear. A complete C++ implementation
is given in Appendix A.

5. Discussion and Experiments

The persistent indefiniteness of Ψshear is slightly surprising. The
overall system is usually semi-positive definite; enough so that the
original paper [BW98] did not even the mention the possibility of
indefiniteness. The negative eigenvalues are all −I6, so it is possi-
ble that cloth-like stiffnesses prevent this term from becoming too
large. It is also possible that the positive stretching eigenvalues,
combined with the regularizing effects of the mass-inertia terms,
tend to cancel this negative-definiteness.

We have verified the equivalence of our FEM formulation to
the original formulation both numerically and qualitatively. First,
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Figure 2: Left: Stretch test using original Baraff-Witkin force formulation [BW98]. Center: Stretch test, using our FEM formulation. The
results are identical to the original. Right: Stretch test using ARAP instead of the original Baraff-Witkin stretching term. The results are
qualitatively similar, but not identical. The lack of an explicit weft slightly suppresses horizontal wrinkling along the top and bottom.

Figure 3: Left: Same stretch test as Fig. 2, but without a shearing term. The wrinkles disappear entirely. Center: Our generalized Baraff-
Witkin model from §5 with b = [1 1]>. Right: Our generalized Baraff-Witkin with b = [3 1]>. Altering b significantly alters wrinkle
formation. In all cases, k = 100 and the bending constant is 1e−4.

we confirmed that our forces and force gradients match the origi-
nal forces up to working precision (1e−8) for random values of F.
Then, we confirmed that simulations using both models produce the
exact same results (Fig. 2, left and middle). All of our simulations
are quasistatic; the shapes arise solely due to boundary conditions
and material and gravity forces.

Given the similarity between Ψstretch and ΨARAP, we also ran
tests using ΨARAP (Fig. 1 and Fig. 2, right). As expected, the results
are qualitatively similar, but in Fig. 1, the ARAP version slightly
suppresses higher-frequency wrinkles, and also favors a character-
istic low-frequency wrinkle down the middle. In Fig. 2, the ARAP
model is slightly more reluctant to wrinkle at the edges. In both
cases, this makes ARAP appear more rubber-like. The same phe-
nomenon appears when we perform a drape test (Fig. 4, left and
middle). We speculate that these arise due to the absence of pre-
ferred warp and weft directions in the stretching energy.

With the equivalence established, we experimented with differ-
ent variations on the original Baraff-Witkin energy. All of these
experiments were run on a 40,000 vertex mesh with gravity set
to g = [0 − 9.8 0]> and using the Discrete Shells bending en-
ergy [GHDS03]. The bending constant in Fig. 1 refers to the kθ

in Ψθ = kθ
3l2

a (θ− θ0)
2, where l, a, and θ0 refer to the rest edge

length, area, and bending angle. When the shearing term Ψshear is
omitted from the simulation, wrinkling under extension disappears
entirely (Fig. 3, left). The I6 invariant clearly plays a critical role in
the characteristic appearance of cloth.

We also experimented with relaxing the orthogonality conditions
in the stretching and shearing energies, i.e. what happens when

a 6= au and b 6= av? Non-orthogonal directions can be plugged di-
rectly into Ψstretch without any modification, but the shearing en-
ergy requires a more generalized form:

Ψgeneral = a
(

I6(a,b)−a>b
)2

. (42)

The original Ψshear tries to persistently restore the original angle
between au and av, but since a>u av = 0, it requires no explicit state-
ment. For general a and b, the a>b scalar must be introduced.

We set a = [1 0]>, but then set b = [1 1]> and b = [3 1]> in
Fig. 3. In both cases, b is normalized, and the wrinkles appear in
progressively non-orthogonal directions, consistent with the weft
direction specified by the new b.

Higher-order versions of the Baraff-Witkin energies also suggest
themselves. An StVK-like stretching term would be:

Ψstretch, StVK = a
[(√

I5(au)−bu

)4
+
(√

I5(av)−bv

)4
]
. (43)

However this energy is already mentioned and discarded in the
original [BW98] paper (§4.2, first paragraph) as needlessly non-
linear. An StVK-like shearing term also naturally suggests itself:

Ψshear, StVK = a
(

I6(a,b)−a>b
)4

. (44)

Under stretching, this energy produces results that are qualitatively
identical to the original shearing, but under draping, suppresses
wrinkling altogether (Fig. 4, right).

Finally, we experimented with the effect of using our semi-
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Figure 4: Left: Drape test using our FEM formulation of the Baraff-Witkin energy. Middle: Same test, using ΨARAP in place of Ψstretch. The
wrinkles near the edges are slightly suppressed, giving it a more rubbery appearance. Right: Same test, using Ψshear, StVK. The wrinkles are
suppressed entirely. Here, k = 30, and the bending constant is 5e−7.

(a) Gauss-Newton, 1 iteration (b) Gauss-Newton, 2 iterations

(c) Gauss-Newton, 3 iterations (d) Gauss-Newton, 4 iterations

(e) Ours, 1 iteration (f) Ours, 3 iterations

Figure 5: Stretch test, without gravity, with a Gauss-Newton ap-
proximation [CK02], has still not converged after 4 Newton itera-
tions. Our approach is nearly converged after a single iteration.

positive-definiteness projection compared to the Gauss-Newton ap-
proach [CK02] of dropping all the H∗ terms. Fig. 5 shows the same
scene as Figs. 2 and 3, but without gravity. A single Gauss-Newton
iteration fails to capture any of the buckling features; they gradu-
ally appear after three Newton iterations. Using our approach, the
features are nearly converged after a single iteration.

6. Conclusions and Future Work

We have presented an FEM formulation of Baraff-Witkin cloth us-
ing the I5 and I6 invariants. We have presented a novel analysis of
I6, which is generally applicable, even outside of this context. Ad-
ditionally, we have completely characterized the eigensystem of the
model, including when the system becomes indefinite.

The effects of the positive-definiteness projection are worth fur-
ther consideration. Indefiniteness indicates that multiple energeti-
cally enticing solutions are accessible from the current configura-
tion, and the projection serves as a tie-breaker. What is the global
effect of this tie-breaking? Does it sometimes bias the simulation
towards energetically inferior states? Other strategies will almost
certainly produce different results, particularly in the presence of
collisions, and may be worth further investigation.

One future direction is to apply these results in a homogenization
context [SNW20], as a granular mechanism now exists for encod-
ing an arbitrary number of fiber-level directions. Finally, in light of
the persistently indefinite shearing term, the question arises: does a
qualitatively similar, more convex energy exist?
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Appendix A: C++ Code for Stretching and Shearing Hessians

This is a C++ implementation using Eigen [GJ∗10] of the semi-
definite projection from §4.2.2 for the stretch Hessian. Excluding
spaces, comments, and typedefs, it is 19 lines of code.
typedef Eigen::Matrix<double, 2, 1> Vector2;
typedef Eigen::Matrix<double, 3, 1> Vector3;
typedef Eigen::Matrix<double, 3, 2> Matrix3x2;
typedef Eigen::Matrix<double, 6, 6> Matrix6x6;

void stretchHessian(const Matrix3x2 &F, Matrix6x6 &H) const
{

H.setZero();
const Vector2 u(1.0, 0.0);
const Vector2 v(0.0, 1.0);
const double I5u = (F * u).transpose() * (F * u);
const double I5v = (F * v).transpose() * (F * v);
const double invSqrtI5u = 1.0 / sqrt(I5u);
const double invSqrtI5v = 1.0 / sqrt(I5v);

// set the block diagonals, build the rank-three
// subspace with all-(1 / invSqrtI5) eigenvalues
H(0,0) = H(1,1) = H(2,2) = std::max((1.0 - invSqrtI5u), 0.0);
H(3,3) = H(4,4) = H(5,5) = std::max((1.0 - invSqrtI5v), 0.0);

// modify the upper block diagonal, bump the single
// outer-product eigenvalue back to just 1, unless it
// was clamped, then just set it directly to 1

c© 2020 The Author(s)
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const Vector3 fu = F.col(0).normalized();
const double uCoeff = (1.0 - invSqrtI5u >= 0.0) ? invSqrtI5u : 1.0;
H.block<3,3>(0,0) += uCoeff * (fu * fu.transpose());

// modify the lower block diagonal similarly
const Vector3 fv = F.col(1).normalized();
const double vCoeff = (1.0 - invSqrtI5v >= 0.0) ? invSqrtI5v : 1.0;
H.block<3,3>(3,3) += vCoeff * (fv * fv.transpose());

// the leading 2 is absorbed by the mu / 2 coefficient
H *= _mu;

}

This is a complete C++ implementation of the semi-positive-
definite projection method from §4.3.3 for the Hessian of Ψshear.
Excluding spaces and comments, it is 20 lines of code.

void shearHessian(const Matrix3x2 &F, Matrix6x6 &pPpF) const
{

const Vector2 u(1.0, 0.0);
const Vector2 v(0.0, 1.0);
const double I6 = (F * u).transpose() * (F * v);
const double signI6 = (I6 >= 0) ? 1.0 : -1.0;

Matrix6x6 H = Matrix6x6::Zero();
H(3,0) = H(4,1) = H(5,2) = H(0,3) = H(1,4) = H(2,5) = 1.0;

const Vector6 g = flatten(F * (u * v.transpose() + v * u.transpose()));

// get the novel eigenvalue
const double I2 = F.squaredNorm();
const double lambda0 = 0.5 * (I2 + sqrt(I2 * I2 + 12.0 * I6 * I6));

// get the novel eigenvector
// the H multiply is a column swap; could be optimized more
const Vector6 q0 = (I6 * H * g + lambda0 * g).normalized();

Matrix6x6 T = Matrix6x6::Identity();
T = 0.5 * (T + signI6 * H);

const Vector6 Tq = T * q0;
const double normTq = Tq.squaredNorm();

pPpF = fabs(I6) * (T - (Tq * Tq.transpose()) / normTq) +
lambda0 * (q0 * q0.transpose());

// half from mu and leading 2 on Hessian cancel
pPpF *= _mu;

}

Finally, flatten implements vec(·) as follows:

Vector6 flatten(const Matrix3x2 &A) const
{

Vector6 column;
unsigned int index = 0;
for (unsigned int j = 0; j < 2; j++)

for (unsigned int i = 0; i < 3; i++, index++)
column[index] = A(i, j);

return column;
}

Appendix B: An Eigenanalysis of Generalized Shearing

In the following, we will perform a novel analysis of Ψshear for
general a and b, and obtain some relatively unwieldy (but analytic)
eigenvalues. The expressions become much simpler when we spe-
cialize to the Baraff-Witkin case in §4.3.2.

The Bunch-Nielsen-Sorensen (BNS) formulas [BNS78] can be
used to quickly determine the eigendecomposition of a rank-one
updated system, provided that the decomposition of the original
system is already known. Similar to the related Sherman-Morrison-
Woodbury formula [JP03], the approach is usually applied numeri-
cally, but the system we are examining is sufficiently small that we
can apply the approach analytically.

From Eqn. 32, our original system is I6H6 (we drop the leading

2 for brevity), so its eigenvalues are a scaled version of Eqn. 31:

λ0,1,2 = I6

(
aT b+1

)
λ3,4,5 = I6

(
aT b−1

)
. (45)

The next step in BNS is to project the normalized, rank-one update
vector g6 into the eigenspace of the original system, i.e. Q from
I6H6 = QΛQ>. We denote this projection as,

z = QT g6
‖g6‖

, (46)

where Q in this case has the compact form (shown unnormalized):

Q =

 a+b a−b

⊗ I3×3. (47)

Using this vector, we can now form the secular equation [Gol73]:

1+‖g6‖2
5

∑
i=0

(
z2

i
λi−λ

)
= 0, (48)

where zi denotes the scalar entries of z, and λi are the original
eigenvalues of I6H6. For Eqn. 32, this becomes:

1+‖g6‖2

(
z2

0 + z2
1 + z2

2
I6
(
a>b−1

)
−λ

+
z2

3 + z2
4 + z2

5
I6
(
a>b+1

)
−λ

)
= 0. (49)

The λ roots correspond to the eigenvalues of the rank-one updated
system we are interested in. The secular equation usually generates
higher-order polynomials that must be solved numerically, but our
original system only contained two unique eigenvalues, so Eqn. 49
is quadratic. Four of the six original eigenvalues remain exactly the
same, and we only need to locate two new eigenvalues.

The roots of the quadratic can be solved for analytically to obtain
the new eigenvalues:

λ0,3 = α±
√

α2−4I6
[
(a>b2−1)I6 +a>bI2−β

]
. (50)

where

α = 2a>bI6 + I2

β =
∂I6
∂F

 a+b
‖a+b‖

a−b
‖a−b‖

 :
∂I6
∂F

 a+b
‖a+b‖

b−a
‖b−a‖


We can alternatively state β = (z2

0 + z2
1 + z2

2)− (z2
3 + z2

4 + z2
5), but

the term remains unwieldy.

With the new eigenvalues in hand, the BNS formulas provide a
simple means of computing the updated eigenvectors:

qnew = Q(Λ−λnewI6×6)
−1 Q>g6. (51)

The structure of the eigenvalues in our problem allows the inverse
to be pushed to an inner negation, reducing our case to the follow-
ing eigenmatrices:

Q0,3 =
∂

2
Ψsh

∂F2 :
∂I6
∂F

+λ0,3
∂I6
∂F

. (52)

The two new non-trivial eigenpairs for shearing are now fully spec-
ified by Eqns. 50 and 52. Each of these eigenpairs take the place
of one eigenpair from the positive- and negative-definite subspaces
for I6 described in Eqn. 31.
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The four remaining eigenvalues are unaltered from I6H6, and
their eigenvectors now form two rank-two subspaces. The first
spans the positive-definite subspace that is orthogonal to the new
(λ0,Q0) eigenpair, and the second spans the negative-definite sub-
space orthogonal to (λ3,Q3). As in the stretching case, we see in
§4.3.3 that explicit expressions for these subspaces are not needed
to compute a semi-positive-definite projection. All of these expres-
sions simplify when specialized to the Baraff-Witkin (§4.3.2).
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