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1 Introduction

In this document we evaluate our algorithms and design choices.
We prepared a data set consisting of large inputs (section 2). Unlike
segmentation data sets, which usually contain images with individ-
ual objects to be detected, we chose inputs more suitable for texture
extraction: non-stationary textures (few perspective distortions and
shadows) and natural images containing textures. We drawn clus-
tering manually which will serve as ground truth (section 2). In sec-
tion 3 we explain the numerical measures we use. Then we evaluate
our hierarchical SLIC algorithm compared to hierarchical segmen-
tation (section 4), the choice of feature vectors (section 5), and our
clustering algorithm compared to k-means and spectral clustering
(section 6).

We would like to note that one of our algorithms strength is its
flexibility. A number of its components can be directly swapped to
apply it to different use cases. Thus, while we give justifications for
our choices here, we recommend that those applying our method
consider if there use cases justify different choices.

2 Datasets

Input images with one ground truth for each of them are shown in
figures 1 and 2. Table 1 provides the resolutions and an approxi-
mate scale of the patterns labeled in the shown ground truth. Users
were asked to: 1) identify the patterns at a scale that they fixed
themselves, e.g. by means of a square window, 2) label the pixels
according to the identified patterns.

Dataset name Resolution Ground truth
in pixels scale in pixels

Boxtop 1536× 2048 100
Brick small dirty 1024× 544 100
Bubbling rusty metal 2560× 1920 200
Bush 1600× 1200 150
City 2016× 703 75
Concrete floor damaged 1024× 636 40
Earth 1440× 720 34
Flower 1600× 1200 100
Moss 1024× 683 200
Plaster damaged 373× 560 60
River 1616× 616 100
Grass 1600× 1200 300
Tower 2618× 3907 400
Wall with door 2560× 1920 300
Wall with pipe 2560× 1920 250

Table 1: Resolution of our test images and pattern scale of our
ground truth labeling for each test image.



Boxtop Brick small dirty

Bubbling rusty metal Bush

City Concrete floor damaged

Earth Flower

Figure 1: Our datasets, part 1/2: input image (left) and our manually assigned texture labels (right). The superimposed blue square at the
bottom-left corner of input images represents the pattern scale at which the manual clustering was performed. The image row above each
input image shows the set of texture patterns that were identified by the users.



Moss Wall with door
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Figure 2: Our datasets, part 2/2: input image (left) and our manually assigned texture labels (right). The superimposed blue square at the
bottom-left corner of input images represents the pattern scale at which the manual clustering was performed. The image row above each
input image shows the set of texture patterns that were identified by the users.



3 Numerical measures

Let S = {S1, S2, . . . , S|S|} be a partition of an image with N pix-
els. For any pixel p ∈ Si, let denote S(p) = i the region index.
We have to compare numerically partitions of a same image, which
we know a ground truth clustering G for.

When S is a clustering, each cluster S may have several regions.
When S is a partition (or segmentation), each segment S is a single
region. We use the same ground truth in both cases. However,
different regions belonging to the same cluster are considered as
distinct regions in a segmentation point of view.

3.1 Measures for partitions / segmentations

Superpixel partitions are a basis for later clustering which may be
seen as an under-segmentation. In order to be useful each super-
pixel should ideally be contained in a single region. This condi-
tion can be assessed by the under-segmentation error [Achanta et al.
2012]

U(S→ G) =
1

N

∑
G∈G

 ∑
S∈S, |S∩G|

|S| >ε

|S|

−N
 (1)

where ε is a threshold to tolerate small errors in the ground
truth [Achanta et al. 2012], which we set to ε = 1%. A smaller
under-segmentation error indicates a set of superpixels that are
more fateful to the ground truth.

3.2 Measures for clustering

Conversely to superpixels, clusters are comparable to the ground
truth. Thus we make use of two standard segmentation metrics [Ar-
beláez et al. 2011].

The Rand Index is defined as

RI(R, S) = 2

N(N − 1)

∑
p

∑
q>p

(R(p) = R(q)) & (S(p) = S(q))
|| (R(p) 6= R(q)) & (S(p) 6= S(q)) (2)

where q > p compares positions in lexicographic order, and the
boolean expression is interpreted as 1 or 0. It measures the propor-
tion of pairs of pixels (p,q) that are either in the same region both
in R and in S, or in different regions both in R and in S.

The covering of R by S is an asymmetric measure defined as

Cov(R→ S) =
∑
R∈R

|R|
N

max
S∈S

|R ∩ S|
|R ∪ S| (3)

Both of these measures give values between 0 (worse) and 1 (best).

3.3 Dealing with multi-scale partitions

One issue is to compare a multi-scale sequence {S1, . . . , SΓ} with
a single scale ground truth G. The idea is that we do not expect
one single scale to perfectly match the ground truth but we want
the hierarchy to potentially recover any ground truth. Thus we plot
curves of the metric on Sγ against |Sγ |. So different sequences may
be compared even if abscissas |Sγ | are not equal.

4 Evaluation of the segmentation

Our hierarchical SLIC superpixels algorithm (H-SLIC) is similar to
segmentation though the regions we seek have different properties.
In this section we compare H-SLIC with the hierarchical segmen-
tation (H-Seg) of Arbeláez et al. [2011]. Both H-SLIC and H-Seg
produce a sequence of nested partitions {S1, . . . , SΓ}, that is Sγ−1

is a sub-partition of Sγ . As explained in section 3 we plot curves
U(Sγ → G) against |Sγ |. Numerical results are shown in figure 3
and 4. Note that the mininum and maximum numbers of regions
of H-SLIC and H-Seg curves may differ for a dataset. The reason
is that the H-SLIC and H-Seg data were produced independently.
The comparison between the results of the two methods is thus rel-
evant in the range were the numbers of regions are similar. Image
sequences illustrating H-SLIC and H-Seg results are available as
videos following this link: graphics.cs.yale.edu/HSLIC video.html.

We draw the following conclusions.

• Compared to H-Seg, H-SLIC performs:

– often better (Bush, Bubbling rusty metal, Moss, tower,
Wall with door, Wall with pipe);

– sometimes equivalent (Brick small dirty, Con-
crete floor damaged, Earth, Flower, Plaster damaged,
River);

– rarely worse (Boxtop).

• H-SLIC performs better on both non-stationary textures (e.g.
Bush, Bubbling rusty metal) and ”textured images” (e.g.
Wall with door).

• H-SLIC may struggle with region boundaries with low con-
trast differences (Boxtop).

• H-Seg performs well when region boundaries are sharp.

graphics.cs.yale.edu/HSLIC_video.html
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Figure 3: H-SLIC (solid line) versus H-Seg (dashed line), part 1/2. Lower values indicate superpixels are more faithful to ground truth.
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Figure 4: H-SLIC (solid line) versus H-Seg (dashed line), part 2/2. Lower values indicate superpixels are more faithful to ground truth.



5 Evaluation of the feature vectors

Our system requiters a method of comparing superpixels. For algo-
rithmic simplicity and speed, we assign each superpixel a feature in
a feature space, and then approximate k-nearest-neighbors [Mount
2010] to efficiently perform the comparison. Direct comparison of
superpixels is left to future work. We tested the following feature
vectors to describe a region:

Moments. The 15 dimensional vector includes, for each of the 3
Lab color channels, the first 5 centralized moments. That is
it includes the mean, standard deviation, and 3 higher mo-
ments [Lockerman et al. 2013].

Gabor filter. We compute filters in frequency space as defined by
Equation 31 of Movellan [2002]. A single octave is used with
a central frequency of 20

σ
, where σ is the scale of level. Six

angles are selected with 30 degrees angular resolution. For
each filter we place the sum of square values of both the real
and imaginary components. This leads to a 36 dimensional
feature vector (3 color channels ∗ 1 octave ∗ 6 angles ∗ 2
components).

We chose a filter size to be 2
max(a,b)

, where a and b are de-
fined by Movellan [2002]. Care must be taken due to the non-
rectangular shape of superpixels. We use binary erosion with
a square neighborhood of half the size of the filter to remove
points whose values suffer from boundary effects.

It should be noted that this feature space requires superpixels
to be large enough to perform the convolution. As such, we
bound the base scale to 25 pixels and requere each superpixel
to contain at least 100 pixels.

Local statistics. The 63 dimensional vector includes, for each
of the 3 Lab color channels, the means over cells of a
quadtree: the whole region; 4 quadrants weighted 1/4; 16
sub-quadrants weighted 1/16. We split the quadtree at the
mean row and column of each set of points.

Several qualitative comparisons are shown in figures 7 to 21. We
show the clustering Cl for several levels l.

Quantitative comparisons, obtained as explained in section 3, are
provided in figures 5 and 6.

In conclusion, there is qualitative differences in the resulting clus-
ters. However none of the 3 feature vectors performs better univer-
sally. The moments vector has the advantage of being the simplest
computationally, so it sounds a good compromise. Alternatives are
available and usable depending on the needs of the user.
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Figure 5: Comparison of feature vectors, part 1/2. Note that each color represents a different quantitative measure that is not comparable
to the other colors. Higher values represents better agreement between algorithm result and ground truth.
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Figure 6: Comparison of feature vectors, part 2/2. Note that each color represents a different quantitative measure that is not comparable
to the other colors. Higher values represents better agreement between algorithm result and ground truth.
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Figure 7: Clustering results with different feature vectors for image Boxtop.
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Figure 8: Clustering results with different feature vectors for image Brick small dirty.
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Figure 9: Clustering results with different feature vectors for image Bubbling rusty metal.
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Figure 10: Clustering results with different feature vectors for image Bush.
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Figure 11: Clustering results with different feature vectors for image City.
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Figure 12: Clustering results with different feature vectors for image Concrete floor damaged.
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Figure 13: Clustering results with different feature vectors for image Earth.



Moments (our method) Gabor filter Local statistics

C5 C4 C4

C4 C3 C3

C3 C2 C2

C2 C1 C1

C1

Figure 14: Clustering results with different feature vectors for image Flower.
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Figure 15: Clustering results with different feature vectors for image Moss.
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Figure 16: Clustering results with different feature vectors for image Plaster damaged.
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Figure 17: Clustering results with different feature vectors for image River.
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Figure 18: Clustering results with different feature vectors for image Grass.
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Figure 19: Clustering results with different feature vectors for image Tower.
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Figure 20: Clustering results with different feature vectors for image Wall with door.
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Figure 21: Clustering results with different feature vectors for image Wall with pipe.



6 Evaluation of the clustering

We compared our clustering based on nonnegative matrix factoriza-
tion (NMF) with K-means and spectral clustering. However, these
algorithms require the number of clusters to be supplied as inputs.
We therefore extend them by using our NMF inspired heuristic to
calculate the number of clusters.

Several qualitative comparisons are shown in figures 24 to 38. We
show the clusters Cl for several levels l.

Quantitative comparisons, obtained as explained in section 3, are
provided in figures 22 and 23.

We draw the following conclusions.

• In many cases, the different clustering methods perform sim-
ilarly.

• In order to use the other methods, we still need to perform
part of the NMF based algorithm. The NMF algorithm also
gives us additional information (the F and G matrices) that is
not evaluated here, or given by other methods. We feel this
justifies the choice of NMF for our algorithm.

• Using NMF introduces a new tool without limiting users still
able to use the other algorithms depending on the situation
and constraints. For example, a user concerned with speed,
but who does not need F and G, might choose K-means or
spectral clustering.

• Finally, the novel NMF algorithm allows for texture metrics
that don’t use feature spaces.
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Figure 22: Comparison of clustering methods, part 1/2. Note that each color represents a different quantitative measure that is not
comparable to the other colors. Higher values represents better agreement between algorithm result and ground truth.
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Figure 23: Comparison of clustering methods, part 2/2. Note that each color represents a different quantitative measure that is not
comparable to the other colors. Higher values represents better agreement between algorithm result and ground truth.
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Figure 24: Results with different clustering methods for image Boxtop.
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Figure 25: Results with different clustering methods for image Brick small dirty.
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Figure 26: Results with different clustering methods for image Bubbling rusty metal.
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Figure 27: Results with different clustering methods for image Bush.
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Figure 28: Results with different clustering methods for image City.



NMF(our method) K-means Spectral clustering

C4 C3 C4

C3 C2 C3

C2 C1 C2

C1 C1

Figure 29: Results with different clustering methods for image Concrete floor damaged.
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Figure 30: Results with different clustering methods for image Earth.
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Figure 31: Results with different clustering methods for image Flower.
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Figure 32: Results with different clustering methods for image Moss.
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Figure 33: Results with different clustering methods for image Plaster damaged.
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Figure 34: Results with different clustering methods for image River.
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Figure 35: Results with different clustering methods for image Grass.
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Figure 36: Results with different clustering methods for image Tower.
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Figure 37: Results with different clustering methods for image Wall with door.
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Figure 38: Results with different clustering methods for image Wall with pipe.
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