
Nonnegative Matrix Factorization
Supplemental material #2 to

Multi-Scale Label-Map Extraction for Texture Synthesis

Yitzchak David Lockerman1, Basile Sauvage2, Rémi Allègre2, Jean-Michel Dischler2, Julie Dorsey1, Holly Rushmeier1
1 Yale University, Computer Graphics Group, New Haven, USA

2 ICube, Université de Strasbourg, CNRS, France

This suplemental material details our solution to the Nonnegative
Matrix Factorization (NMF) problem

argmin
F,G

‖Ds − FG‖2 (1)

s. t. F and G are left stochastic
(non-negative with all columns adding up to 1)

where

• D is a large n× n sparse stochastic matrix (known).

• s is the number of steps (known).

• F is n× r and G is r × n (unknown).

• r < n is the (unknown) rank of the factorization, i.e. the
number of labels in our labeling problem.

We will present several algorithms of increasing complexity that
compute r, F , and G from D and s. Each one will provide either a
speed or accuracy improvement to its predecessor, but will require
said predecessor to preform some of the calculations. The final al-
gorithm presented (Algorithm 8) will call all of our other algorithms
as subroutines. When we solve a NMF problem in the main paper,
we use Algorithm 8.

1 Approximation error

Since the NMF problem in NP-hard we look for an approximate
(sub-optimal) solution. The error of a solution (F,G) is given by
‖Ds − FG‖2 where matrix norm is Froebenius norm. However
we must avoid creating a temporary dense n × n matrix Ds, as it
would quickly become the bottleneck of the algorithm as n grows.
We therefore rewrite:

‖Ds − FG‖2 = Tr
(

(Ds)TDs
)

+ Tr
(
GTFTFG

)
− Tr

(
(Ds)TFG

)
− Tr

(
GTFTDs

)
= Tr

(
(Ds)TDs

)
+ Tr

(
FTFGGT

)
− Tr

(
(FTDs)TG

)
− Tr

(
FTDsGT

)
Note that the first term is constant for a fixed D so it can be ne-
glected. Also use A · B = Tr(ATB) the sum of elements of
entry-wise product. In the end (F,G) must minimize the (normally
negative) value

e(F,G) =
(
FTF

)
·
(
GGT

)
−
(
FTDs

)
·G− F ·

(
DsGT

)
(2)

where proper order of matrix multiplication ensures no large dense
matrices have to be calculated.

2 Initial factorization

To begin with, Algorithm 1 is our simplest heuristic. However,
it is the only one that leads to a determination of the number of
labels; a critical advantage of our method. The algorithm select
the best result among a number of factorizations which are quickly
generated using algorithms 2 and 3.

Input: sparse stochastic matrix D
Input: number of steps s
Input: number of runs b
Output: factorization (F,G)
Output: number of labels r

repeat
F ← Algorithm 2
G← Algorithm 3
if it is the best attempt so far then save (F,G)

until no improvement for b attempts
r ← number of columns of F

return (F,G) and r

Algorithm 1: Computation of an initial factorization. The “best
attempt” and “improvement” are measured by equation (2) and, un-
less otherwise noted, we used b = 50 runs in practice.

Input: D and s
Output: F

list L ← all superpixels
matrix F is empty
while L 6= ∅ do

j ← random SP in L
f ← Dsδj
concatenate the vector f as a new column of F
for i ∈ L do

if (Df)i < fi then remove i from L
end

end

return F
Algorithm 2: Solving for F .

Algorithm 2 is a heuristics that computes F and the number of la-
bels (i.e. the number of columns). It is based on the (ideal) assump-
tion that every superpixel (SP) j should be assigned as single label
c(j) so Gδj ≈ δc(j). As a consequence Dsδj ≈ FGδj ≈ Fδc(j),
that is to say the probability map Dsδj is equal to column c(j)
in F . We use this idea in algorithm 2: we iteratively concatenate
columns f = Dsδj to F until every superpixel i has a “good” label
candidate. We consider that label c(j) is a good candidate for i if
an extra step D on f decreases its similarity with j: the intuition

Input: D, s, F
Output: G

λ← [1, · · · , 1]T

while norm decreases by at least 10−8 do
Solve nnls for G: 2

(
FTF

)
G = 2FTDs − 1λT

Normalize Gcj ← Gcj/
(∑

kGkj

)
, ∀c, j

Solve least squares for λ: 1λT = 2FTDs − 2
(
FTF

)
G

norm←
∥∥2
(
FTF

)
G− 2FTDs + 1λT

∥∥;
end

return G
Algorithm 3: Solving for G. It uses a regular dense non-negative
least squares (nnls) solver, a dense least squares solver, and La-
grange multipliers λ. Complexity is O(nr2).

is that, starting at δj , D first floods c(j) (similarity increases for i)
and then leaks outside c(j) (similarity decreases for i).

Algorithm 3 solves the equation Ds = FG for G in a least squares
sense, using Lagrange multipliers. In particular λ is the multiplier
for the constraint that 1TG = 1T . At its heart, the algorithm leaps
between two optimizations: solving for G in a nonnegative least
square sense, and solving for λ in a least squares sense.

3 Local improvement with gradient descent

While the factorization provided by Algorithm 2 is a good starting
point, its error (measured by Equation (2)) is far from optimal. In-
deed its advantages are (i) it computes the number of labels, and (ii)
it tends to be “close” to near optimal solutions. We take advantage
of this property by (i) fixing r, and (ii) use (F,G) as starting point
for a gradient descent (see Algorithm 4).

Input: D and s
Output: (F,G) : the factorization
Output: ε : the error value

(F0, G0, r)← Algorithm 1 with b = 50
(F,G, ε)← Algorithm 5 (gradient descent)
return F , G, and ε
Algorithm 4: Our basic solution of our NMF algorithm. We get
a starting point form Algorithm 1 and then descend from that point
using Algorithm 5.

Our gradient descent algorithm (Algorithm 5) is specifically de-
signed to work with powers of sparse matrices while being linear
in n (at the expense of being quadratic in r). The algorithm lifts the
stochastic matrices F and G to non-stochastic matrices F and G.
The derivatives of ‖Ds − FG‖2 with respect to F , G, F and G are
given by

∆F = ∇F ‖Ds − FG‖2 = DsGT − F
(
GGT

)
(3)

∆G = ∇G ‖Ds − FG‖2 = FTDs −
(
FTF

)
G (4)

and for any 1 ≤ k ≤ n, 1 ≤ l ≤ r

∆Fkl =
∂ ‖Ds − FG‖2

∂Fkl
=

(∑
i Fil

)
∆Fkl −

∑
i Fil∆Fil(∑

i Fil

)2 (5)

Input: D and s
Input: (F0, G0) the initial factorization
Input: h initial step size (we used h = 2000)
Input: max it stopping criterion on # iterations (we used

max it = 40000)
Input: δ stopping criterion on error decrease (we used δ = 10−20)
Output: (F,G) the final factorization
Output: ε the error value

F and F← F0

G and G← G0

ε← e(F,G)
while # iterations < max it do

F′ ← [F + h∆F]+ using equations (3) and (5)
G′ ← [G + h∆G]+ using equations (4) and (6)
F ′ ← normalize columns of F′
G′ ← normalize columns of G′
ε′ ← e(F ′, G′)
if ε− ε′ < 0 then h← hc1

else if ε− ε′ > c2 then h← hc2/(ε− ε′)

else if |ε− ε′| < δ then STOP

else (F,G,F,G, ε)← (F ′, G′,F′,G′, ε′)

end

return F,G, ε
Algorithm 5: Gradient descent algorithm for nonnegative matrix
factorization of stochastic matrices. Here, [x]+ is x if x is positive,
otherwise it is zero. Error measure is given by equation (2). The
test ε−ε′ < 0 prevents overshooting a minimum (we used c1 = .5)
The test ε−ε′ > c2 avoids to descend too quickly (we used c2 = 5)

and for any 1 ≤ k ≤ r, 1 ≤ l ≤ n

∆Gkl =
∂ ‖Ds − FG‖2

∂Gkl
=

(∑
i Gil

)
∆Gkl −

∑
i Gil∆Gil(∑

i Gil

)2
(6)

4 Convergence speed-up by projection on a
sub-set of variables

When n is extremely large (more than 10, 000), the gradient de-
scent algorithm becomes inefficient. To speed up the convergence
we exploit an other observation: when r � n, the system is overde-
termined. Our idea here is to project the problem on a sub-set of
variables of size m < n, solve the sub-problem of size m, and
derive a solution for the remaining n−m variables.

Let S ⊂ {1, . . . , n} be a sub-set of size m. For clarity we as-
sume the rows and columns in D have been permuted so that
S = {1, . . . ,m}. Let O = {m+ 1, . . . , n} be the complement.

We can rewrite the matrices block-wise:

D =

[
DSS DSO

DOS DOO

]
; F =

[
FS

FO

]
; G =

[
GS GO

]
(7)

We then rewrite the problem Ds = FG block-wise:[
Ds

SS Ds
SO

Ds
OS Ds

OO

]
=

[
FSGS FSGO

FOGS FOGO

]
(8)

The idea is to solve for the first 3 blocks only because they contain
Θ(mn) elements, allowing them to be stored explicitly in dense
matrix. The large block Ds

OO = FOGO is ignored. Algorithm 6
works as follows:

• Ds
SS = FSGS is a NMF problem which is small enough to be

solved by Algorithm 4. However, the columns of Ds
SS need

be normalized so as to add up to 1; the resulting FS is then
rescaled.

• Ds
SO = FSGO can be solved for GO using Algorithm 3.

• Ds
OS = FOGS can be solved for FO using a similar algo-

rithm, modified to ensure that the rows of the full F sums to
one (see Algorithm 7).

The blocks of Ds can be computed efficiently through the recur-
rence relationship, for 1 < i ≤ s :

Di
SS =DSSD

i−1
SS +DSOD

i−1
OS = Di−1

SS DSS +Di−1
SO DOS

Di
OS =DOSD

i−1
SS +DOOD

i−1
OS (9)

Di
SO =Di−1

SS DSO +Di−1
SO DOO

As detailed in Algorithm 6, this procedure first needs m to be cho-
sen such that r < m. We start by defining r using Algorithm 1 with
a small number b of runs because we only care about r. In simu-
lated data m = 10r seems to be sufficient and we use m = 30r
in practice. Then we run the projected algorithm if m < n oth-
erwise the gradient descent is sufficient. This algorithm is much
faster than gradient descent when n is large. However it does not
perfectly reach the local minimum, so in the end we run a gradient
descent which converges in substantially fewer iterations.

Input: D and s
Output: (F,G) : the factorization
Output: ε : the error value

r ← Algorithm 1 with b = 2
if m = 30r ≥ n then run Algorithm 4 and return

S ← select m disjoint random indexes
O ← complement of S
Extract DSS , DSO and DOS from D
Compute Ds

SS , Ds
SO and Ds

OS using equation (9)
Λ← diag

(
1TDs

SS

)
(FS , GS)← Solve FSGS ≈ Λ−1DSS (Algorithm 4)
FS ← ΛFS

GO ← Solve Ds
OS ≈ FSGO (Algorithm 3)

FO ← Solve Ds
OS ≈ FOGS (Algorithm 7 with v = 1− FT

S 1)

(F,G, ε)←Algorithm 5 initialized at (

[
FS

FO

]
,
[
GS GO

]
)

return (F,G, ε)

Algorithm 6: Projection algorithm for nonnegative matrix factor-
ization of stochastic matrices.

Input: D, s, G, and v
Output: F

λ← [1, · · · , 1]T

while norm decreases by at least 10−8 do
Solve nnls for F : 2

(
GGT

)
F = 2DsGT − 1λT

Fjc ← vcFjc/
(∑

i Fic

)
, ∀c, j

Solve least squares for λ: 1λ = 2DsGT − 2F
(
GGT

)
norm←

∥∥2F
(
GGT

)
− 2DsGT + 1λT

∥∥
end

return F
Algorithm 7: Solving for part of F . It uses a regular dense non-
negative least squares (nnls) solver, a dense least squares solver, and
Lagrange multipliers λ. Complexity is O(nr2).

5 Boosted algorithm

The algorithms we have presented so far rely on random starting
values. If these values turn out to be poor, the results of the algo-
rithm will be poor as well. As such, we run the full algorithm set
multiple times (5 times in practice). We then combine them using a
custom boosting framework detailed in Algorithm 8.

At each run we obtain a pair (F,G). The results are combined into
larger matrices:

F =
[
F0 F1 . . . Ft

]
and G =


G0

G1

...
Gt

 (10)

which are normalized into stochastic matrices. Intuitively, F and
G are factorizations of the the diffusion matrix with overlapping
textures. We can measure the overlap by looking at the correlation
between the different texture nodes given by W = GF. We can
remove the overlap and produce a final texture set by preforming the
factorization W2 = FG using Algorithm 4 with b = 5. Finally,
we produce our final (F,G) = (FF ,GG).

Input: D and s
Output: (F,G)

F← n× 0 matrix
G← 0× n matrix
for 1 . . . 5 do

(F,G)← Algorithm 6
Append the columns of F to F
Append the rows of G to G

end
W← GF

(F ,G)← Solve W2 = FG using Algorithm 4
F ← FF
G← GG

return (F,G)

Algorithm 8: Boosted algorithm for nonnegative matrix factoriza-
tion of stochastic matrices.

