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Abstract

We describe the use of traditional stereological methods to synthe-
size 3D solid textures from 2D images of existing materials. We
first illustrate our approach for aggregate materials of spherical par-
ticles, and then extend the technique to apply to particles of arbi-
trary shapes. We demonstrate the effectiveness of the approach with
side-by-side comparisons of a real material and a synthetic model
with its appearance parameters derived from its physical counter-
part. Unlike ad hoc methods for texture synthesis, stereology pro-
vides a disciplined, systematic basis for predicting material struc-
ture with well-defined assumptions.

CR Categories: I.3.7 [Three-Dimensional Graphics and Realism]:
Color, shading, shadowing, and texture— [I.3.3]: Picture/Image
Generation—Viewing algorithms

Keywords: stereology, texture synthesis, solid textures, volumet-
ric textures, procedural textures, spatial sampling theory

1 Introduction

Many real objects exhibit complex spatial variation in their surface
color and finish. To generate synthetic objects with a comparable,
realistic appearance, the area of texture synthesis has been exten-
sively explored in computer graphics [Ebert et al. 1994]. Recently,
a number of authors have directed their attention toward synthesiz-
ing textures on 3D object surfaces based on representative 2D im-
ages [Turk 2001; Gorla et al. 2001]. By using physically occurring
input textures, these algorithms can often produce a rich, natural
object appearance.

Two-dimensional textures [Blinn and Newell 1976] or small-
scale geometric textures parameterized in 2D (e.g., bidirectional
texture functions, bumps, displacements) are effective for apply-
ing a natural appearance to objects with inherently 2D coverings,
such as paint, skin, fur, or mechanically roughened surfaces. Gard-
ner [1984], Peachey [1985], and Perlin [1985] introduced the idea
of 3D solid textures to represent objects with surface properties that
result from being cut out of a 3D spatially varying material.

For many years procedural techniques have proved useful for the
artistic generation of 3D solid textures. However, 3D procedural
shaders are often highly parameterized with nonintuitive inputs that
can make it difficult, even for a talented artist, to match the appear-
ance of a physical sample. Similar to 2D texture synthesis, it is
desirable to generate 3D solid textures directly from physical sam-
ples. However, obtaining a fully 3D solid texture sample is far more
difficult than obtaining a 2D texture sample.
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Figure 1: A synthetic image, rendered with the solid textures gen-
erated by our algorithm.

In this paper we demonstrate the use of techniques from tradi-
tional stereology developed in the fields of biology and material
sciences [Hagwood 1990; Underwood 1970] to generate 3D solid
textures from physically captured 2D images. The result is a collec-
tion of methods applicable to the class of solid textures composed of
particles distributed in a binding medium. This class includes man-
made building materials such as concrete aggregates, asphalt, and
terrazzo, naturally occurring materials such as igneous rock, and
materials that exhibit discrete volumetric voids, such as sponges
and foams.

While the class of solid textures we consider in this paper is
restricted, by drawing on stereology as developed in other fields
we add to the existing array of tools for extracting 3D information
for computer graphics applications. Furthermore, since stereology
has been developed as a tool for quantitative analysis, it has well-
defined assumptions and a rigorous mathematical basis. This allows
for the generation of reliable, precise solid textures for computer
graphics applications.

2 Previous Work

A wide variety of 3D procedural texturing methods have been de-
veloped over the years, but relatively few are based on physical
data [Dischler and Ghazanfarpour 2001; Wei 2001]. One approach
to using physical data is Heeger and Bergen’s pyramid-based tex-
ture analysis and synthesis [1995]. An initial 3D noise distribution
is modified so that the histogram of each frequency band matches
the histogram of the corresponding frequency band in a 2D image.
In the same spirit, Dischler et al. [1998] use a spectral analysis of
orthogonal images of a physical 3D volume and iteratively alter the
3D noise distribution to match the statistics of the original images.
This allows their method to capture aspects of anisotropic solids
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such as wood and marble. Both methods work well for a subclass of
common natural textures, but are unable to capture material struc-
ture composed of discrete particles.

Recently Markov Random Field (MRF) algorithms have re-
ceived a great deal of attention for generating 2D textures [Wei and
Levoy 2001]. If a fully 3D solid texture sample is available, using a
3D extension to these algorithms is natural. Generating 3D textures
from 2D samples with MRFs is not as straightforward. Wei [2001;
2003] describes an MRF approach using multiple 2D images to syn-
thesize a 3D texture. This approach is successful for some texture
classes, but it fails to accurately characterize the 3D distribution of
macroscopic particles.

Lefebvre and Poulin [2000] successfully generate 3D wood tex-
tures from 2D images by analyzing an input image to obtain spe-
cific parameters for a procedural shader. However, this approach
does not generalize for other classes of solid textures.

Dischler and Ghazanfarpour [1999] discuss the problem of gen-
erating solid textures with macroscopic structure. They describe
a technique to synthesize natural particle shapes to be embedded
in a 3D volume. The design of the particle shape begins with a
scanned cross-section of a physical particle. However, the proposed
approach does not describe how to capture the full structure of an
existing material by estimating the particle size distribution.

Solid textures are also of interest in the material and biological
sciences. A precise quantitative characterization of heterogeneous
materials is needed to study structures that are built or grown from
these materials [Underwood 1970; Howard and Reed 1998]. Since
obtaining full three-dimensional samples of such solids is an ex-
pensive and time-consuming process, the discipline of stereology
was developed to infer 3D distributions from 2D samples. With the
advent of digital imagery, image analysis and stereology are fre-
quently used in conjunction for a variety of applications [Wojnar
2002]. In this paper we demonstrate the application of some of the
fundamental techniques of stereology to computer graphics solid
texture synthesis.

3 Estimating 3D Distributions

An important observation in stereology is that the macroscopic
statistics of a 2D image are related to, but not equal to the statistics
of a 3D volume. In this work, we present a disciplined approach
to recovering 3D volume parameters using methods motivated by
spatial sampling theory. We begin by demonstrating the approach
with a distribution of spheres, and then extend the approach to work
with arbitrary particle types.

3.1 Distributions of Spheres

To illustrate the process, we first consider a 3D distribution of
spherical particles having a maximum diameter of dmax. A 2D slice
through the volume results in circular profiles, also having a maxi-
mum diameter of dmax. Our objective is to establish a relationship
between the size distribution of 2D circles, expressed as the num-
ber of circles per unit area, and the size distribution of 3D spheres,
expressed as the number of spheres per unit volume. This process
is known as “unfolding”. Our approach is most similar to that pro-
posed by Saltikov [1967].

For any distribution of identical convex particles, particle den-
sity, NV , is related to the profile density, NA, by the fundamental
relationship of stereology [Underwood 1970]:

NA = H̄NV (1)

where H̄ is the mean caliper diameter of the particle, i.e., the dis-
tance between tangent planes averaged over all orientations of the
particle. For spheres, H̄ is simply the diameter.
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Figure 2: In this set of three equations, the blue disks represent pro-
file densities, NA(i), the green spheres represent particle densities,
NV (i), and the red and white spheres represent the probabilities that
a sphere of a given size appears with a particular profile size. The
first two expressions are used to calculate the densities of the largest
and smallest profile sizes respectively. These and the remaining
density computations are expressed in the matrix equation.

For most aggregate volumes, it is unlikely that the particles will
all be of the same size, so we instead use a histogram approach that
is common to a number of stereological algorithms. We group both
particles and profiles according to their diameter into n evenly sized
bins. Spherical particles are clustered according to their diameter
to yield particle densities NV (i),{1 ≤ i ≤ n}. In a random 2D slice
through the volume, circular profiles are similarly clustered accord-
ing to their diameter to yield profile densities NA(i),{1 ≤ i ≤ n}.

The densities NV and NA are related by the values Ki j, which ex-
press the relative probabilities that a sphere in the jth histogram bin
with diameter j/n, exhibits a profile in the ith histogram bin with
diameter (i− 1)/n < d ≤ i/n. Profiles of the largest size, NA(n)
can only result from slices near the equator of the largest spheres,
NV (n). This relationship is visually represented at the top of Fig-
ure 2 for n = 4 and dmax = 1. In contrast, profiles of the smallest
size, NA(1), can result from a slice near the poles of a sphere of
any diameter, as expressed in the second equation in Figure 2. The
complete density vectors NV and NA are related by the expression

NA = dmaxKNV (2)

The corresponding visual representation is shown at the bottom of
Figure 2. Spheres can only exhibit profiles of equal or smaller di-
ameter, so K is an upper-triangular matrix where

Ki j =

{

1
n
(
√

j2 − (i−1)2 −
√

j2 − i2
)

for j ≥ i
0 otherwise

(3)

Given this relationship, if we know the profile density distribu-
tion NA, we can solve for the particle densities NV as

NV =
1

dmax
K−1NA (4)

Since K is an upper-triangular matrix, its determinant is the prod-
uct of the diagonal elements— all of which are nonzero. Thus, |K|
is nonzero, and K is guaranteed invertible.
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3.2 Distributions for Other Particles

For a nonspherical particle P, we cannot easily classify the profile
size according to its diameter, so we need a different metric. We
have chosen to use

√

A/Amax, where A is the area of the profile
and Amax is the largest encountered area of any profile. The profile
area can be easily and reliably measured in digital images simply by
counting pixels. Taking the square root results in values that tend to
be more evenly distributed among equally sized histogram bins—
a property that is important for minimizing numerical error. This
also establishes a linear relationship between the profile measure
and the particle scale. In contrast, prior authors have instead opted
to categorize profiles according to A/Amax, but used a nonlinear
scale for histogram bins [Saltikov 1967; Underwood 1970]. Note
that classifying profiles by

√

A/Amax is equivalent to classifying
spherical particles by d/dmax as was done in Section 3.1.

As with spherical particles, we must compute a matrix K to relate
particle size to profile size. This relationship can be expressed as

NA = H̄KNV (5)

where H̄ is the mean caliper diameter of particle P. Each matrix en-
try Ki j represents the normalized relative probability that a particle
in column j exhibits a profile in row i. More explicitly, particles in
column j are scaled uniformly by j/n, and profiles in row i have a
classification value

√

A/Amax between (i−1)/n and i/n. We refer
to these probabilities as normalized in the sense that the probabili-
ties in the final column of K sum to 1, and for each column j,

n

∑
i=1

Ki j = j/n (6)

Note that if only one histogram bin is used (n = 1), then Equa-
tion 5 reduces to the fundamental relationship of stereology (Equa-
tion 1).

For an arbitrary particle P, represented as a watertight polygon
mesh, it may be difficult to compute the K matrix analytically. To
compute these statistics, we use a Monte Carlo routine that takes
advantage of the speed of modern graphics hardware.

To compute a cross-sectional area of particle P, the polygon
mesh is assigned a random orientation and rendered such that the
near clipping plane of an orthographic camera cuts through the par-
ticle at a random depth. As the mesh is rendered, the stencil buffer
counts how many times each pixel is touched during rasterization.
Odd values indicate that a pixel is inside the cross-section; even
values denote pixels outside the cross-section. Thus, calculating
the area is a simple matter of summing the odd-valued pixels in the
stencil buffer. The resulting area calculations are used to populate
the histogram for each column of the K matrix. This process must
keep track of the maximum encountered profile area, APmax, and
can also be used to compute the mean caliper diameter of P, H̄P.

If a slice through a non-convex particle results in two or more
disjoint profiles, as shown in the top slice in Figure 3, then each
disjoint region should be considered separately, and each will con-
tribute to the histogram construction.

For each particle type we tested, this process converged to a
residual of < 0.5% for each histogram bin within 100,000 itera-
tions. Computation time was less than four minutes. Some example
statistics for simple particles are shown in Figure 4.

Before this data can be used in our stereological calculations,
we must compute a scale factor s to relate the size of particle P
to the size of the particles seen in our input image. Suppose the
image exhibits profiles with maximum area Aimg. This is equal to
the maximum profile of P, if scaled uniformly by

s =
√

Aimg/APmax (7)

Figure 3: The K matrix for an arbitrary particle is constructed by
calculating the cross-sectional area of random slices through the
volume.
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Figure 4: Likelihood of cross-sectional area for simple particle
types.

This scale factor is used to calculate the mean caliper diameter H̄ =
sH̄P, which is used in Equation 5.

Finally, if we compute the profile densities NA from the input
image, we can solve for the particle densities NV as before:

NV =
1
H̄

K−1NA (8)

3.3 Managing Multiple Particle Types

In many instances, a volume may exhibit more than one type of
particle. In this case, each particle type i will have its own mean
caliper diameter H̄i, representative matrix Ki, and distribution NVi:

NA = ∑
i

(

H̄iKiNVi
)

(9)

If we assume that each particle type exhibits the same
distribution— i.e., particle type and size distribution are
uncorrelated— then this can be reexpressed as follows:

NA = ∑
i

(

H̄iKiP(i)NV
)

(10)

= ∑
i

(

H̄iKiP(i)
)

NV (11)
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(a) (b) (c) (d)

Figure 6: The mean color value for each profile (b) can be subtracted from the input image (a) to yield a residual (c). Here, the residual has
been recentered around the color of the binding material for clarity. This residual lacks the macroscopic structure of the input, and can be
resynthesized as a 3D volume [Heeger and Bergen 1995] (d).

(a) (b)

Figure 5: A cube of synthesized material, colored using mean pro-
file colors (a) and by adding a 3D noise function (b).

where NV = ∑NVi is the total particle density, and P(i) is the prob-
ability that a particle is of type i. This allows us to solve for the
particle densities NV as

NV =
[

∑
i

(

H̄iKiP(i)
)

]−1
NA (12)

4 Reconstructing the Volume

Once the particle densities NV have been recovered, a volume can
be constructed to match the appearance of the input image. The
reconstruction process establishes particle positions and colors, as
well as a residual noise function to add fine details characteristic of
the input.

4.1 Annealing

The synthetic volume is populated according to the density distri-
bution NV such that the largest particle P in the aggregate is scaled
uniformly by s from Equation 7. The naive approach for populat-
ing the volume is to add one particle at a time, randomly testing
orientations and translations until sufficient vacant space is found.
Unfortunately, this method fills space inefficiently and works only
for loosely packed volumes. Instead, we populate the volume with
all of the particles, ignoring overlap, and then perform simulated
annealing to resolve collisions. This method repeatedly searches
for all collisions and then relaxes particle positions to reduce inter-
penetration.

The annealing process considers the volume to repeat in the x,
y, and z directions so that the resulting volume can tile seamlessly
in space. If the annealing process pushes the center of a particle
outside of the volume in one direction, then that particle is moved
to the opposite side of the volume; thus, the global density of the
particles cannot be altered. In practice, visual repetition is only no-
ticeable in rendered images if the texture volume is exactly aligned
with a large planar face. This can be avoided with a simple rotation
of the texture volume.

4.2 Color

If particle size and color are uncorrelated, then each particle can
be assigned the mean color of a randomly chosen profile from the
input image. Similarly, the binding material can be assigned the
mean color of all non-profile pixels in the input image. An example
result is shown in Figure 5(a).

If particles of different sizes exhibit different colors, then dis-
tinguishable color categories can be automatically identified by ap-
plying the k-means clustering algorithm to the set of mean profile
colors. The stereological analysis process can then be applied to
the profiles in each color category, and the combined results can be
used to populate a synthetic volume.

4.3 Adding Fine Details

As can be seen in Figure 5(a), using the mean color for each particle
produces an unsatisfying result as it fails to capture color variations
at sub-particle scale. To replicate the input appearance, we start by
subtracting the mean color values of each profile— Figure 6(b)—
from the original input (a) to obtain a residual (c). Residual values
for each pixel can range from -1 to 1 in each color channel. The
images shown here have been recentered around the color of the
binding material for clarity. The residual lacks the structure of the
original input and responds well to the application of Heeger and
Bergen’s synthesis algorithm [1995] in three dimensions (d). This
newly synthesized volume of texture can then be added to the mean
color values to obtain the result shown in Figure 5(b), which ex-
hibits both the structure and the characteristic noise frequencies of
the input.

The residual volume should be synthesized to match the pixel
scale of the input image. Like the particle volume, the residual
volume can be synthesized to allow for seamless repetition in the x,
y, and z directions. Thus, the dimensions of the residual volume do
not need to match the dimensions of the particle volume.

Attempts to estimate noise distributions for individual particles
were largely unsuccessful due to the insufficient sample size of the
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Figure 7: Performance of the density recovery algorithm on a vari-
ety of input distributions. Each graph shows 3D particle densities
grouped into ten histogram bins. Actual distributions are shown in
blue and estimated distributions in red.

(a) (b)

Figure 8: Comparison of the single-mode volume of spherical parti-
cles (a) and a comparable volume obtained via the density recovery
algorithm (b).

input profiles. Furthermore, we discovered that applying different
noise functions to individual synthetic particles resulted in sharper
visible boundaries than appear in the input images.

5 Results

To evaluate the accuracy of the algorithm, we tested the process on a
series of synthetic volumes, a physical volume with known parame-
ters, and several physical datasets with unknown parameters. These
results and corresponding analysis are discussed in the remainder
of this section.

5.1 Synthetic Volumes

To test the robustness of the algorithm under various conditions,
we analyzed a number of different synthetic distributions. In each
case, a synthetic volume was populated with spherical particles, and
an analysis was performed by counting the visible profiles in ten
equally spaced slices through the volume. Figure 7 shows the re-
sults of our algorithm applied to single-mode, bimodal, lognormal,
and constant distributions. These results were based on between
1050 and 1400 profile observations, grouped into 10 evenly sized

Figure 9: A collection of particle shapes used by the solid texture
algorithm.

histogram bins. Figure 8 illustrates a side-by-side comparison of a
small subregion of the single-mode volume and a comparable re-
gion in a volume generated with the recovered density values.

5.2 Working with Physical Data

For the synthetic volumes described above, we benefit from being
able to obtain an exact profile count and from knowing the exact
particle shapes a priori. In contrast, when working with physical
data, we cannot predict exact particle shapes, we are often unable
to count small profiles, and we are often limited to fewer profile
observations. Each of these introduces potential sources of error
into our calculations.

The problem of reconstructing a particle shape from a represen-
tative 2D slice is insoluble without additional information. Unless a
full particle can be extracted from the volume, particle shapes need
to be estimated. For the results shown here, particles were created
by manually editing the control vertices of a NURBS sphere un-
til the desired shape was achieved. Example particle models are
shown in Figure 9. Only one or two particle shapes were used in
each data set.

Errors in the volume density recovery process are typically man-
ifest as either dramatically different densities in adjacent histogram
bins or negatively populated histogram bins. If only a few profiles
have been observed in one or more of the profile histogram bins,
then numerical errors should be expected. This problem can be re-
duced simply by decreasing the number of histogram bins that are
used for the calculations.

Negative estimates in the recovered volume histogram are par-
ticularly likely for the bins representing the smallest particles. It
should be expected that small profiles may be obscured by noise or
may be removed completely from the volume by the sample prepa-
ration process. This problem of “missing fines” is addressed in prior
publications [Keiding and Jensen 1972; Maerz 1996]. These under-
represented profiles may, in turn, result in negative estimates for
small particle densities. It should not necessarily be considered an
undisciplined approach to clamp these values to zero.

5.3 Test Volume

In order to test the algorithm on physical data under controlled con-
ditions, we constructed a volume with known particle shape and
distribution. Part of the volume was sliced into planar regions, as
shown in Figure 10(a), and the profiles were counted to estimate
the profile density distribution. The remainder of the volume was
carved into an abstract shape and scanned with a 3D turntable scan-
ner. Finally, a synthetic volume was rendered using the density
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(a) (b) (c) (d)

(d)

(e)

Figure 10: To test the algorithm under controlled conditions, we constructed and measured a volume with known particle shape and distribu-
tion (a). An abstract shape carved from the physical volume (b), is synthetically replicated using the color, noise, and distribution parameters
recovered by our algorithm (c). For comparison, we also show the synthetic volume with mean color values only (d) and a synthetic replica
of the volume rendered using Heeger and Bergen’s algorithm [1995] (e).

values recovered by the stereological analysis process. Figure 10
shows a side-by-side comparison of the actual volume (b) and the
synthetic rendition (c). Also shown for comparison are the synthetic
volume rendered with mean color values only (d), and a synthetic
volume textured by applying Heeger and Bergen’s algorithm [1995]
to the initial input texture (e). This final image effectively captures
much of the color and frequency information, but fails to capture
the discrete structure of the input.

5.4 Physical Inputs

Figure 12 shows some results of the algorithm. In each image pair,
the input texture is shown on the left and the corresponding syn-
thetic result on the right. In each case, the residual volume is syn-
thesized at a resolution of 128x128x128 voxels in less than three
minutes. The most time-consuming part of the process is the vol-
ume annealing, which can require anywhere from a few minutes to
an hour, depending on the particle density, size, and complexity. To
reduce the number of potential collisions that must be checked, we
hash the particles into a regular grid at each iteration of the anneal-
ing process. Annealing times can also be improved by substituting
simpler proxy meshes for complex particle shapes.

Figures 1 and 11 show synthetic scenes rendered using solid tex-
tures recovered by our algorithm.

6 Conclusions

The methods described in this paper expand the class of 3D solid
textures that can be synthesized from 2D photographs. More specif-
ically, we introduce methods that operate on textures with a dis-
crete macroscopic structure. We draw techniques from a class of
existing literature that offers a number of additional synthesis tools
for graphics. The statistical approach provides a sound basis for
synthesizing material distributions with well-defined assumptions
to perform accurate predictive rendering.

Future work includes automated estimation of 3D particle shapes
and extension of these techniques for a greater variety of input tex-
tures.
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