
Accurate Face Rig Approximation with Deep Differential Subspace
Reconstruction

STEVEN L. SONG∗, Blue Sky Studios
WEIQI SHI∗, Yale University
MICHAEL REED, Blue Sky Studios

Rest Pose Ground Truth Our Method Difference
Fig. 1. Our rig approximation method learns localized shape information in differential coordinates and, separately, a subspace for mesh reconstruction.

To be suitable for film-quality animation, rigs for character deformation
must fulfill a broad set of requirements. They must be able to create highly
stylized deformation, allow a wide variety of controls to permit artistic free-
dom, and accurately reflect the design intent. Facial deformation is especially
challenging due to its nonlinearity with respect to the animation controls
and its additional precision requirements, which often leads to highly com-
plex face rigs that are not generalizable to other characters. This lack of
generality creates a need for approximation methods that encode the defor-
mation in simpler structures. We propose a rig approximation method that
addresses these issues by learning localized shape information in differential
coordinates and, separately, a subspace for mesh reconstruction. The use
of differential coordinates produces a smooth distribution of errors in the

∗Authors contributed equally.

Authors’ addresses: Steven L. Song, stevens@blueskystudios.com, Blue Sky Studios, 1
American Ln, Greenwich, CT, 06831; Weiqi Shi, weiqi.shi@yale.edu, Yale University,
New Haven, CT, 06520; Michael Reed, reed@blueskystudios.com, Blue Sky Studios, 1
American Ln, Greenwich, CT, 06831.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2020/7-ART34 $15.00
https://doi.org/10.1145/3386569.3392491

resulting deformed surface, while the learned subspace provides constraints
that reduce the low frequency error in the reconstruction. Our method can
reconstruct both face and body deformations with high fidelity and does not
require a set of well-posed animation examples, as we demonstrate with a
variety of production characters.

CCS Concepts: • Computing methodologies→Machine learning; An-
imation.

Additional Key Words and Phrases: rigging, deep learning, facial animation

ACM Reference Format:
Steven L. Song,Weiqi Shi, andMichael Reed. 2020. Accurate Face Rig Approx-
imation with Deep Differential Subspace Reconstruction. ACM Trans. Graph.
39, 4, Article 34 (July 2020), 12 pages. https://doi.org/10.1145/3386569.3392491

1 INTRODUCTION
Film-quality character rigs rely on a complex hierarchy of procedural
deformers, driven by a large number of animation controls, that
map to the deformation of the vertices of a character’s surface mesh.
Because the characters are subject to high aesthetic standards, and
the rigs are the primary means by which the animators interact with
them, the rigs themselves have strict performance requirements:
the character’s skin must behave predictably and precisely over
the entire range of control, which for animated characters can be
extreme because of the caricatured design and motion.

ACM Trans. Graph., Vol. 39, No. 4, Article 34. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392491
https://doi.org/10.1145/3386569.3392491


34:2 • Steven L. Song, Weiqi Shi, and Michael Reed

Rigs for facial animation typically have much more complex be-
havior than body rigs, and require additional precision due to their
importance in conveying the most crucial aspects of communication
and expression. To offer artistic freedom, the face rig is usually a
complex structure containing a large number of numerical controls.
Unlike the joint-based controls commonly used for a character’s
body, these numerical controls are globally defined and coopera-
tively influence the transformation of each vertex, making facial
deformation highly nonlinear and expensive to compute.
In production it’s often desirable to reuse the same rig behavior

for different purposes in different environments. For example, trans-
ferring the rig to a simulation application for crowd simulation, to
a game engine for VR production, or to a renderer for render-time
manipulation. Unfortunately it’s often not viable to take the original
rig to other packages because a visually-matching reimplementation
is required per deformer per package. Similarly, simulation-based
rigs (e.g. muscle systems) provide complex behavior that is desirable
in many production situations, but their lack of interactive response
discourages their adoption. These issues can be addressed by a rig
approximation method if it has the following characteristics: simple
universal structure, high accuracy and good performance. A neural
network approach automatically meets the first requirement, as the
same network can approximate varying non-linear functions with
different sets of weights. Neural networks can also provide benefits
with batch evaluation. For example crowd characters, which can
often reuse the same nonlinear deformation with different scaling
factors, can be batch evaluated if driven by a neural network. Much
of the work in this area – on moving from the typical rig deformer
“stack” to a neural representation – has focused on run-time perfor-
mance e.g. [Bailey et al. 2018].
In contrast, our work directly addresses the importance of ac-

curacy as experienced in the film production environment. In this
paper we introduce a new learning-based solution to accurately
capture facial deformation for characters using differential coordi-
nates and a network architecture designed for that space. Similar
to other work, we assume that the deformation has both a linear
and a nonlinear component that can be separated. The linear defor-
mation is not the focus of this paper since its contribution to facial
deformation is limited and many linear skinning solutions have
been proposed [Kavan et al. 2008; Kavan and Žára 2005]. Instead, we
focus on learning the nonlinear component, which applies equally
well to both face and body rig approximation, as we show in our
results.

At run-time our method takes as input animation controls defined
as a set of artist-level rig parameters, and computes the deforma-
tion as vertex displacements from the rest pose. During the offline
training process, we use vectorized features generated from rig pa-
rameters, and labels are differential coordinates calculated from the
localized nonlinear deformation of the original rig. The differential
coordinates have the advantages of a sparse mesh representation
and embedded neighbor vertex information, which contribute to the
learning of local surface deformation. However, the transformation
between coordinates is ill-conditioned and non-invertible, and so
we introduce a separate subspace to improve the conditioning of
the reconstruction. This subspace is determined by artist-specified
“anchor points”, selected from the original mesh at features that are

significant to the character’s expressive ability. Our method con-
ducts separate subspace training to learn how these anchor points
deform using a split network structure.

We qualitatively and quantitatively evaluate our method on mul-
tiple production-quality facial rigs. Experimental results show our
method can predict accurate facial deformation with minimal visual
difference from the ground truth. We show our method extends
to body deformation where it compares favorably with existing
solutions. Additionally, we show how using anchor points improves
the reconstruction by reducing the low frequency error introduced
in the differential training.

2 RELATED WORK

2.1 Skinning and Rigging
Skinning techniques can be roughly divided into physics-based [Kim
et al. 2017; Si et al. 2014], example-based [Loper et al. 2015; Mukai
and Kuriyama 2016], and geometry-based methods. We focus here
on geometry-based solutions due to their computational efficiency
and simplicity. One of the most widely used techniques is linear
blend skinning (LBS) [Magnenat-Thalmann et al. 1988], where a
weighted sum of the skeleton’s bone transformations is applied
to each vertex. Advances in this technique include dual quater-
nion skinning (DQS) [Kavan et al. 2008], spherical blend skinning
[Kavan and Žára 2005] and optimized centers of rotation skinning
[Le and Hodgins 2016]. Although these methods are computation-
ally efficient for computing linear deformation, they do not handle
nonlinear behaviors such as muscle bulging and twisting effects.
Improving on this, Merry et al. [2006] and Wang et al. [2002] in-
troduce more degrees of freedom for each bone transformation
through additional skin weights, which can be acquired by fitting
example poses. Other approaches designed to address these issues
include pose space deformation [Lewis et al. 2000; Sloan et al. 2001],
cage deformation [Jacobson et al. 2011; Joshi et al. 2007; Ju et al.
2005; Lipman et al. 2008], joint-based deformers [Kavan and Sorkine
2012], delta mush [Le and Lewis 2019; Mancewicz et al. 2014] and
virtual/helper joints methods [Kavan et al. 2009; Mukai 2015; Mukai
and Kuriyama 2016]. Wang et al. [Wang et al. 2007] introduce a
rotational regression model to capture nonlinear skinning deforma-
tion, which optimizes the deformation of all vertices simultaneously
using the Laplace equation. An iterative optimization [Sorkine and
Alexa 2007] is proposed to approximate nonlinear deformation by
alternating surface smoothing and local deformation. All of these
methods require additional computational cost for nonlinear com-
ponents and are primarily focused on body deformation, leaving
facial deformation largely unaddressed.

2.2 Facial Rig and Deformation
In contrast to body rigs that are defined by bones and joints, facial
rigs often include hundreds of animation controls represented by nu-
merical values which control the nonlinear transformation of each
vertex. These animation controls are globally defined and widely
used in blendshapes [Lewis et al. 2014; Lewis and Anjyo 2010] to
achieve realistic facial animation for production. Prior work focused
on editing data-driven facial animation [Deng et al. 2006; Joshi et al.
2006] or providing intuitive control [Lau et al. 2009; Lewis and Anjyo

ACM Trans. Graph., Vol. 39, No. 4, Article 34. Publication date: July 2020.



Accurate Face Rig Approximation with Deep Differential Subspace Reconstruction • 34:3

2010]. Li et al. [Li et al. 2010] successfully transfer controller seman-
tics and expression dynamics from a generic template to the target
model using blendshape optimization in gradient space. Weise et al.
[Weise et al. 2011] present a high-quality performance-driven facial
animation system for capturing facial expressions and creating a
digital avatar in real-time. A blendshape system that allows efficient
anatomical and biomechanical facial muscle simulation is proposed
in [Cong et al. 2016].

2.3 Learning-based Deformation
There has been increasing interest in using learning-based solu-
tions to replace traditional deformation algorithms. Previous work
such as [Lewis et al. 2000] utilize a support vector machine to learn
mesh deformation given a set of poses. [Tan et al. 2018a,b] pro-
pose mesh-based autoencoders to learn deformation from a latent
space. Based on their work, [Gao et al. 2018] put forward a solution
to transfer shape deformation between characters with different
topologies using a generative adversarial network. Luo et al. [2018]
propose a deep neural network solution to approximate nonlinear
elastic deformation, combining this with simulated linear elastic
deformation to achieve better results. Liu et al.[2019] use graph
convolutional networks to predict the skin weight distribution for
each vertex, resulting in a trained network that can be applied to
different characters given their mesh data and rigs. Relevant to our
work is [Bailey et al. 2018], where multiple neural networks are
used to approximate the rig’s nonlinear deformation components
under the assumption that each vertex is associated with a single
bone. For each bone, they train a network to predict the offset of
each associated vertex. Three unaddressed issues that motivate our
work are: (1) the deformation of a vertex is often influenced by mul-
tiple bones, with no single bone as the prominent influence, (2) the
deformation can be determined by numeric controls (as in face rigs)
and (3) associating bones with disjoint sets of vertices can introduce
discontinuities at set boundaries.

2.4 Subspace Deformation and Model Reduction
Subspace model reduction techniques are commonly used to solve
nonlinear deformation in real-time applications. Instead of evaluat-
ing the complete mesh, subspace models compute the deformation
of a low dimensional embedding on the fly and project it back to the
entire space. Subspace deformation was originally used in early sim-
ulation work [Pentland and Williams 1989], which uses a subspace
spanned by the low-frequency linear vibration modes to represent
the deformation. To augment the linear model and handle non-
linearities, Krysl et al. [2001] propose the empirical eigenvectors
subspaces using principal component analysis (PCA) for finite ele-
ment models. Summer et al. [2007] use graph structure to represent
deformations as a collection of affine transformations for shape
manipulation. An et al. [2008] introduces subspace forces and Jaco-
bians associated with subspace deformations for simulation. Barbič
et al. [2005] observe that the reduced internal forces with linear
materials are cubic polynomials in reduced coordinates, which could
be precomputed for efficient implicit Newmark subspace integra-
tion. For deformation-related model reduction, Barbič et al. [2012]
propose a method for interactive editing and design of deformable

object animations by minimizing the force residual objective. Wang
et al. [2015] design linear deformation subspaces by minimizing a
quadratic deformation energy to efficiently unify linear blend skin-
ning and generalized barycentric coordinates. Building on these
works, a recent hyper-reduced scheme [Brandt et al. 2018] uses two
subspaces to achieve real-time simulation, one for constraint projec-
tions in the preprocessing stage and the other for vertex positions in
real-time. Close to our work is Meyer et al. [2007], who propose the
Key-Point Subspace Acceleration (KPSA) and caching to accelerate
the posing of deformable facial models. The idea of using key points
for reconstruction is analogous to the anchor points in our case.
However, their method, like other subspace techniques, relies on
high quality animation prior examples to compute the embedding
of the subspace.
Compared with previous work, the advantages of our method

are: (1) it can reconstruct both face and body deformation with high
accuracy, (2) it can take different types of animation controls as input,
(3) it does not require a particular set of well-posed animation priors
and (4) it provides a simple universal structure for cross-platform
real-time evaluation.
For the rest of the paper, we first review the preliminaries of

differential coordinates in Section 3.1. We then describe our train-
ing pipeline (Section 3.2), including the vectorization from input
animation controls, the acquisition of nonlinear deformation from
existing poses, network structures and reconstruction. We intro-
duce the implementation details in Section 3.3, and we describe our
experiments, evaluate the training results, compare with existing
solutions in Section 4. Finally, Section 5 discusses limitations and
future work.

3 METHOD
Our model approximates the nonlinear deformation in a character
rig. The linear deformation can be simply represented with linear
blend skinning, so it’s not our focus here. For a given mesh in rest
pose, our model takes animation controls defined by a set of rig
parameters as inputs, and outputs the non-linear deformation of
the mesh. Fig. 2 shows our training pipeline. To process the training
data, we first vectorize the input rig parameters and extract the
nonlinear deformation represented by vertex displacement from
the corresponding deformed mesh. Then we convert the nonlinear
deformation into differential coordinates (δ space), where we learn
localized shape information and map the rig controls to it. However,
we cannot directly reconstruct the mesh surface from differential
coordinates since the transformation is ill-conditioned. We conduct
a separate subspace learning on a group of anchor points selected
from the original mesh, for which we learn deformation in local
coordinates and use them as constraints for reconstruction.

3.1 Preliminary
Let M ∈ {V , E} be a mesh with n vertices, V ∈ Rn×3. Each vertex
vi ∈ V is represented using absolute Cartesian coordinates and
E represents the set of edges. The Laplacian operator L is defined
[Sorkine 2005] as:

L = I − D−1A (1)

ACM Trans. Graph., Vol. 39, No. 4, Article 34. Publication date: July 2020.



34:4 • Steven L. Song, Weiqi Shi, and Michael Reed

Fig. 2. Our method takes rig parameters and the corresponding joint transforms as input and predicts the nonlinear deformation of the mesh vertices (in
differential coordinates) and the set of anchor points (in cartesian space). Green pathways are for network training, blue pathways for prediction.

where A is a (0, 1) adjacent matrix of size n × n that indicates the
connectivity of vertex pairs in the mesh with Ai j = 1 if (i, j) ∈ E. D
is a diagonal matrix of size n × n representing the degree di of each
vertex. Applying the Laplacian operator L to the vertices transforms
the mesh into delta space, where each vertexvi is represented as δi .
The differential coordinate of each vertex represents the difference
between the vertex itself and the center of mass of its immediate
neighbors (Ai denotes the neighborhood set of vertexvi ∈ V ):

LV = δ

vi −
1
di

∑
j ∈Ai

vj = δi
(2)

It’s more convenient to use the symmetrical version of L, denoted
by Ls = DL = D −A, giving:

LsV = Dδ (3)

Compared to the Cartesian coordinates, where only the spatial
location of each vertex is provided, the differential coordinates carry
information about the local shape of the surface and the orienta-
tion of local details. It preserves local surface detail and captures
the irregular shape of the surface. Transferring mesh deformation
data into differential space leads to a sparse representation, which
also contributes to the learning process. Intuitively, if a surface
patch is deformed uniformly, the differential representation of the
deformation will have zero values for all vertices except for the
boundaries.
Given the Laplacian operator and differential coordinates, we

now consider how to reconstruct mesh surface. Note the matrix

Ls is singular and has a non-trivial zero eigenvector because the
sum of all its rows is 0. Therefore, we cannot directly invert the
matrix for reconstruction, but can add constraints to the matrix to
make it full rank. We introduce the subspace P , which is constructed
by a set of anchor points from V . The dimension of the subspace
is much smaller than the original mesh. The index matrix of the
anchor points I (P) is appended at the end of the Laplacian matrix Ls .
Correspondingly, we append the Cartesian coordinates of anchor
points V (P) to the differential coordinates of the full mesh to make
it solvable:

L̃V =

(
Ls

ωI (P)

)
V =

(
Dδ

ωV (P)

)
= ˜δ (4)

L̃ is the full-rank matrix with anchor points appended to the
original Laplacian matrix. ω is the weight matrix for the anchor
points, which can be used to stress the importance of each anchor
points. Given the full rankmatrix L̃ and ˜δ , we can solve the following
equation:

(L̃T L̃)V = L̃T ˜δ (5)

Applying the Laplacian operator to a mesh is analogous to ob-
taining the second spatial derivatives. The eigenvectors of L are
cosine basis functions of the Fourier transform, and the associated
eigenvalues are squares of the frequencies [Zhang et al. 2010]. We
demonstrate that for a small error ϵ introduced in differential co-
ordinates, the high frequency component of ϵ is dampened when

ACM Trans. Graph., Vol. 39, No. 4, Article 34. Publication date: July 2020.



Accurate Face Rig Approximation with Deep Differential Subspace Reconstruction • 34:5

converted back to Cartesian space. This leads to a smoother distribu-
tion of the error, which is much less noticeable in the reconstructed
surface.

Since Ls is symmetric positive semi-definite, it has an orthogonal
eigenbasis E = {e1,e2, ...en }, with corresponding eigenvalues 0 <
λ1 ≤ λ2 ≤ λ3 ≤ ... ≤ λn . (For this analysis, we assume Ls is
non-singular by adding one anchor)

LsV
′ = D(δ + ϵ)

V ′ = L−1s D(δ + ϵ)

V ′ = V + L−1s Dϵ

(6)

We denote Dϵ as ϵ ′ and decompose it in basis E

ϵ ′ = c1e1 + c2e2 + ...cnen (7)

Notice that L−1s shares the same eigenvectors and its correspond-
ing eigenvalues are inversed. We have

Ls
−1ϵ ′ =

1
λ1

c1e1 +
1
λ2

c2e2 + ...
1
λn

cnen (8)

Since λ1 is small and λn is large, the inverse of the eigenval-
ues amplifies the low frequency eigenvector e1 and dampens the
high frequency one en . In this way, the high-frequency errors in
the differential coordinates are reduced. This is desirable for mesh
deformation as localized high frequency errors are much more no-
ticeable. To reduce the amplification of low-frequency error, we
increase the number of anchor points, which improves the condi-
tioning of the Laplacian matrix by increasing the smallest singular
value. Therefore, we can decrease both the low and high-frequency
errors when the mesh surface is reconstructed.

3.2 Pipeline
3.2.1 Input Features. The rig parameters cannot be directly used
for training because they are in different representations and scales.
Therefore, we need to first create feature vectors from the given rig
parameters. Without loss of generality, we assume that facial rigs
include joint controls J and numerical controlsC . For the joint con-
trols, we use the transformationmatrixM Ji = [X Ji , t Ji ] of each joint
Ji as input, whereXi ∈ R

3×3 is the rotation/scale matrix and ti ∈ R3
is the normalized translation value. We vectorize and concatenate
all the joint controls so that we have J = {J1, ...Ji , ...Jj }, Ji ∈ R12.
For the numerical controls, we define the input features as the
concatenation of the normalized numerical value of each attribute,
C = {C1, ...Ci , ...Cc },Ci ∈ R1, where Ci represents each control
attribute. Then we concatenate all the joint and numerical controls
as our input feature F , whose dimension is 12j + c . We normalize all
the translation values together, but every single numerical control
attribute is normalized independently since they are on different
scales.

F = Concat(| |ji=1 Ji , | |
c
i=1Ci ) (9)

To generate the training data, we randomly and independently
sample each rig control using truncated Gaussian distributionwithin
a set range. The range of each control is defined so that it reasonably
covers the possible range of animation, similar to the method used

Fig. 3. An example for rig controls and vectorization. Only joint controls
are shown on the character.

by [Bailey et al. 2018]. We do not limit our training data to well-
animated poses because (1) they require human labor and thus are
expensive to generate, and (2) using randomly generated poses can
cover a large range of motion and more dynamic deformations,
which can improve the generalization of our model.

3.2.2 Nonlinear Deformation. We use the nonlinear deformation
as our training labels, which can be computed from the deformed
mesh. We assume a mesh in rest pose V and its deformation Ṽ is
defined by a set of rig parameters. We also assume Ṽ andV maintain
the same topology. The vertex vi ∈ V and ṽi ∈ Ṽ are defined in
local Cartesian coordinates. We have the following equation:

ṽi = Ti (vi +vi ,nl ) (10)
wherevi ,nl is the vertex displacement in local space caused by

the nonlinear deformation.Ti is the linear transformation for vertex
vi which can be computed from the transformation matrix of the
joint controls.

Ti =

J (vi )∑
k=1

ωkM Jk (M
o
Jk
)−1 (11)

J (vi ) represents the joint controls that have influence on the
vertexvi .M Jk denotes the transformation matrix for joint Jk and
Mo

Jk
is its transformation matrix at rest pose. ωk is the weight for

the joint. We assume the rig as a black box, so we don’t haveMo
Jk

and ωk available. For general purposes, we use an implicit method
to calculate Ti . Given equation 10, we perturb vi ,nl by moving
one unit for every direction along XYZ coordinates and observe
the vertex displacement produced by the rig. Then we can use the
vertex displacement to calculateTi . With the following equations:

ṽ ′
i = Tivi

ṽi ,x = Ti (vi + (1, 0, 0, 0)T )

ṽi ,y = Ti (vi + (0, 1, 0, 0)T )

ṽi ,z = Ti (vi + (0, 0, 1, 0)T )

ṽnull = Ti (0, 0, 0, 1)T

(12)

By subtracting the first equation from the following ones, we
have:

Ti = (ṽi ,x − ṽ ′
i , ṽi ,y − ṽ ′

i , ṽi ,z − ṽ ′
i , ṽnull ) (13)

ACM Trans. Graph., Vol. 39, No. 4, Article 34. Publication date: July 2020.



34:6 • Steven L. Song, Weiqi Shi, and Michael Reed

Ti can be substituted into equation 10 to calculate the nonlinear
deformation with given rig input:

vi ,nl = T
−1
i ṽi −vi (14)

Our goal is to learn the nonlinear deformation from given rig
parameters by minimizing the per-vertex distance between our
results and the ground truth.

3.2.3 Differential Network. The differential network takes the vec-
torized features as input and outputs the vertex displacement corre-
sponding to the nonlinear deformation in differential coordinates.
This network has 5 fully connected layers with 2048 units, each
followed by a Relu activation layer. Similar to [Bailey et al. 2018;
Laine et al. 2017], we apply PCA at the end of the network by multi-
plying the projection matrix with the output. We precompute the
projection matrix on the entire training set. The training data can be
constructed as a matrixM ∈ R3 |V |×m where |V | is the vertex count
andm is the dimension for all training poses. The purpose of PCA
is to project the network output back to a lower dimension which
helps the network converge. We determine the number of principal
components as a fixed percentage of the number of mesh vertices,
which is simple to implement in practice (we evaluate the influence
of different percentage on training in Section 4.1). Alternatively the
PC number can be selected by choosing the most significant basis
vectors such that the reprojection error of the training set is below
a defined threshold.
For the loss function, a simple choice would be the regression

loss such as the Euclidean distance between the predicted vertex
displacement and the ground truth. However, it is known that an L2
loss function tends to blur the prediction results [Isola et al. 2017; Liu
et al. 2019]. Themesh deformation for character animation is smooth
and continuous, which implies the differential representation has
small values. Our training data is generated by random sampling
the rig parameters, but this also means the training data contains
outliers that would never appear in real animation and which appear
in delta space as large values. L2 loss is more sensitive to outliers due
to the consideration of the squared differences. In our case, L2 loss
tends to adjust the network to fit and minimize those outlier vertices,
which leads to higher errors for other vertices. On the other hand,
using L1 loss reduces the influence of outliers and produces better
result. Therefore we use the L1 loss for the differential network.

3.2.4 Subspace Network. The subspace network takes the vector-
ized features as input and outputs the nonlinear deformation of
selected anchor points in local Cartesian coordinates for reconstruc-
tion. Previously, Chen et al. [2005] and Sorkine et al. [2005] use
greedy heuristic methods to select anchor points. They treat all the
vertices in the mesh equally and iteratively select the vertex based
on the largest geodesic distance between the approximated shape
and the original mesh. However, these algorithms do not fit in our
situation because of the different contributions of vertices to the
facial animation. We pay more attention to the important facial
features, such as eyes and mouth, rather than nose, ears or the scalp.
In general face rigs define the controls on those areas to constrain
the deformation. Therefore, we use the rig as reference to select
anchor points and make sure that they are well-distributed and

proportional to the density of the rig controls. Based on our obser-
vation, the training performance and reconstruction results do not
depend on the specific anchor point selection as long as the major
deformable facial features are covered. We also note that the number
of anchor points contributes to the accuracy of reconstruction; we
evaluate that in Section 4.2.
The subspace network consists of a set of mini-networks, each

of which corresponds to a single anchor point and outputs its de-
formation in R3. For the input of each mini-network, we perform a
dimension reduction technique similar to that used in [Bailey et al.
2018], where each network takes as input a subset of the vectorized
features corresponding to the rig controls that deform the anchor
point. However, the difference between our method and Bailey et al.
is that we perform the split training on the anchor points instead of
the entire mesh, and so we avoid the discontinuity issue. We apply
this technique because only a small subset of all rig controls influ-
ence a certain anchor point. We collect the related rig controls by
perturbing all the controls individually and recording which anchor
produces deformation. This process is repeated with 100 random
example poses and with large perturbations to ensure that controls
affecting the anchor are identified. Each mini-network includes 3
fully connected layers with 64 units, each followed by a Relu acti-
vation layer. For the loss function, we use L2 loss for the network
as the subnetwork is trained on Cartesian coordinates, which don’t
encode mesh information in a way that accentuates outliers. We use
multiple mini-networks instead of a single network because there is
no direct spatial relationship between the anchor points and there
is low correlation between their deformation. In practice, we found
this structure has better training performance compared with the
single network due to the reduced dimension.

3.2.5 Reconstruction. We perform reconstruction using the full-
rank Laplacian matrix L̃, which is constructed by appending the
indices of anchor points at the end of the original Laplacian matrix L.
Notice L̃ does not vary with input rig parameters and only depends
on the selected anchor points. According to equation 5, we can apply
Cholesky factorization on L̃T L̃ to get the upper-triangular sparse
matrix R:

L̃T L̃ = RTR (15)

We only need to compute the factorization once with only the
mesh topology information and the matrix R can be reused when-
ever rig parameters change. Now we can easily solve the equation
4 and reconstruct the mesh surface using back substitution. We
concatenate the results from the differential and subspace network
to get ˜δ and use it in the following equation:

RTRVnl = L̃T ˜δ (16)

Since R is a triangular matrix, we can efficiently reconstruct the
nonlinear deformation Vnl with back substitution, which makes
it possible to run the reconstruction at an interactive speed with
frequently updated results from the networks.

We use uniform Laplacian instead of the cotangent Laplacian be-
cause the latter changes as the mesh deforms, requiring expensive

ACM Trans. Graph., Vol. 39, No. 4, Article 34. Publication date: July 2020.



Accurate Face Rig Approximation with Deep Differential Subspace Reconstruction • 34:7

Table 1. Statistics for the three test models.

Agent Bull Matador
Vertices 4403 3669 3211

Face Height (cm) 25.12 84.28 26.03
Face Width (cm) 21.27 67.00 20.45

Numerical Controls 67 131 121
Joint Controls 20 20 20

Anchor 87 73 64
Differential PC 220 183 160

recomputation for every pose. With uniform Laplacian the factor-
ization only needs to happen once, and the reconstruction is done
with 2 back substitutions, which are very fast.

3.3 Implementation Details
For both the differential and subspace networks, we set the batch
size as 128 and choose a SGD solver for optimization with the ini-
tial learning rate as 0.1 and the learning rate decay as 10−6 (SGD
outperforms Adam in our case). We train 10000 epochs for both
the network, which takes 3.5 hours for the differential network on
an NVIDIA GeForce GTX 2080 GPU, and less than 1 hour for the
subspace network.

4 EVALUATION
We use three production face rigs for experiments and evaluation
(see Table 1). For each rig, we take a truncated normal sampling
of the rig parameters to generate 10000 random poses: 9800 for
training and 200 for testing (Fig. 4). The test poses are separated
from the training data to avoid bias. The rig parameters of the test
poses are fed into the trained network to produce the reconstructed
deformation (Fig. 2). To evaluate the training performance we use
two metrics: the MSE of the prediction error and the reconstruction
error (cm). The MSE of the prediction error measures the difference
between the ground truth and network output, while the reconstruc-
tion error measures the per-vertex absolute distance between the
surface reconstruction and ground truth deformation. We evaluate
the mean and maximum reconstruction errors calculated from the
vertices among all test poses. The maximum error is a critical value
to consider as a large localized error will render the animation pose
unacceptable, regardless of the MSE.

Because face rigs precisely control the eyelid, eyebrow, andmouth
behavior, and because these are the primary cues for expression,
having high accuracy here is paramount. A slight difference in eyelid
position changes the relative position of the pupil, which can change
the audience perception of the pose from “scheming” to “sleepy”,
while a similar change in the lip position can go from “slight smile” -
with the teeth slightly exposed - to “sneer”, making any method that
could not accurately differentiate between these poses unacceptable.

4.1 Evaluation for Differential Training
We first evaluate how varying the number of principle components
(PC) influences the differential training. We specify the PC number
as a varying percentage of the mesh vertex count. Fig. 5 shows
the prediction error for three characters over 200 test poses. It is

Table 2. Prediction error (differential) and reconstruction error (mean and
maximum) of differential training with varying number of hidden layers
and fixed subspace training.

Layers 1 2 3 4 5
Differential 2.58 × 10−3 1.54 × 10−3 1.10 × 10−3 1.03 × 10−3 9.47 × 10−4
Mean error 0.0240 0.0197 0.0189 0.0187 0.0182
Max error 0.700 0.633 0.667 0.664 0.541

interesting to note that their MSE is minimized as the PC percent-
age approaches 5%, regardless of the different number of vertices
in their meshes. This suggests the optimal PC number is roughly
proportional to the mesh vertex count. Further increasing the PC
percentage does not lead to significant performance improvement,
but instead makes the network vulnerable to overfitting, shown by
the slight increasing of the loss. Based on these observations, we
set the PC number as 5% of the mesh vertex count for differential
training for the rest of our evaluation.

We use an ablation study to evaluate the influence of the hidden
layer numbers, varying the number of fully connected layers from
1 to 5 while fixing the subspace network and anchor points. The
prediction and reconstruction error for character Agent for each of
these is shown in Table 2. As shown, the prediction error decreases
when the number of hidden layers increases, suggesting the improve-
ment of network capacity for fitting. Also observable is the decrease
of the reconstruction error, but it is less significant compared with
the reduction of prediction error, suggesting that the accuracy of
differential training is not the bottleneck for reconstruction.

4.2 Evaluation for Subspace Training
We use character Agent to evaluate how the anchor points and
subspace network influence the deformation approximation, con-
sidering different number of anchor points, selection methods and
subspace network structures. For experiment purpose, we fix the dif-
ferential training (4403 mesh vertices with 220PC) and only change
the subspace network. We specify the number of anchor points as
1%, 2% and 5% of the mesh vertex count, similar to our evaluation of
PCA for differential training. We report both the prediction and re-
construction error in Table 3. Notice we increase the percentage by
adding new anchor points into the existing ones instead of selecting
a new group. To compare the network structure, we conduct the
subspace training using a single network instead of the subspace
mini-networks (“2%Single”). The single network takes the entire
vectorized features as input and outputs the deformation of all an-
chor points together. To compare different anchor point selection
methods, we use a new group of anchor points around the scalp
with less significant deformation (“2% Scalp”). Notice the original
group of anchor points are selected on the face to cover major facial
features with large deformation, as discussed in Section 3.2.
As observed, increasing the number of anchor points leads to

higher prediction error since the network performs better fitting
when the dimension is low. However, the reconstruction error stays
roughly the same when the number of anchor point gets larger,
because increasing the number of anchor points can improve the
Laplacian matrix condition for reconstruction, which balances the
increase of prediction error. We use 2% anchor points as a middle
point for our implementation and the rest of the evaluation.

ACM Trans. Graph., Vol. 39, No. 4, Article 34. Publication date: July 2020.



34:8 • Steven L. Song, Weiqi Shi, and Michael Reed

Fig. 4. Training poses for production characters Agent (top),Matador (middle) and Bull (bottom). The poses are generated from a broad sampling of the rig
parameter space. Although many look implausible, they are necessary to capture the full space accurately without assumptions on the artist’s control range.

Fig. 5. Prediction error of differential network with varying PC percentage

For the network comparison, both the prediction and reconstruc-
tion error of the subspace mini-networks (“2%”) are lower than the
single network (“2%Single”). We believe the dimension reduction is
the reason for resulting performance improvement. The subspace
mini-networks fit anchor points separately because they are discon-
nected and do not have direct spatial relationship, which enables
better approximation. The single network, on the contrary, tries to
learn the deformation of anchor points all at once, increasing the
difficulty of fitting.
For different anchor point selection, we find using vertices with

less deformation can cause larger reconstruction error even when
the prediction error is smaller. The network has better performance
because no deformation needs to be learned for those vertices, but
they are not ideal for the reconstruction. Fig. 6 shows an example.
As we can see, the deformation on mouth and eyelids are shifted
when vertices on the scalp are selected as anchor points. Ideally,
we want the anchor points to “nail” the deformed mesh in place
and prevent large shifts or rotations for important face regions.
Therefore, we select anchor points to cover major facial features
with large deformation.

4.3 Results
In this section, we evaluate the accuracy of deformation reconstruc-
tion using well-animated poses from production. We evaluate the
mean and max reconstruction errors over a series well-animated

Fig. 6. Comparison of our method using anchors (in yellow) selected from
the major facial features (left) vs. the less deformed scalp (right).

Table 3. Prediction error (subspace) and reconstruction error (mean and
max) of the subspace training with varying anchor percentage with fixed
differential training.

1% 2% 2%(Single) 2%(Scalp) 5%
Subspace 1.35 × 10−3 1.71 × 10−3 7.42 × 10−3 9.37 × 10−4 1.73 × 10−3
Mean error 0.0207 0.0186 0.0336 0.0192 0.0158
Max error 0.524 0.517 0.657 0.562 0.577

production sequences, where the deformations are much more ex-
aggerated and dynamic. We present the quantities results in Table
5. The deformations of character bull are observed with larger er-
rors because we test it on the most extreme animation sequence.
Fig. 7 shows an example for the character and please refer to the
supplemental video for detailed comparison. In general, our method
can accurately reconstruct mesh surface with mean errors smaller

ACM Trans. Graph., Vol. 39, No. 4, Article 34. Publication date: July 2020.



Accurate Face Rig Approximation with Deep Differential Subspace Reconstruction • 34:9

Fig. 7. Side-by-side comparison of ground truth (left), our approximation
(center), and heatmap indicating per-vertex distance error in cm (right).

Table 4. Prediction errors (Differential and Subspace) and reconstruction
errors (Mean and Max) for the tests with different training data size.

25% 50% 75% 100%
Differential 2.66 × 10−3 1.57 × 10−3 1.03 × 10−3 1.53 × 10−3
Subspace 3.91 × 10−3 2.81 × 10−3 2.07 × 10−3 1.71 × 10−3
Mean error 0.0301 0.0246 0.0195 0.0186
Max error 0.891 0.819 0.740 0.517

Table 5. Mean and max reconstruction absolute errors evaluated on the
well-animated production sequences, and as a percentage of face height.

Agent Bull Matador
Mean error 0.032 0.512 0.087
Percentage 0.127% 0.607% 0.334%
Max error 0.630 4.682 0.782
Percentage 2.50% 5.55% 3.00%

Number of Poses 808 249 359

than 0.6% and max error smaller than 6% of the size of the character
faces.

As a data-driven solution, the accuracy of our model largely relies
on sufficient training data. To evaluate how the training size influ-
ence the performance, we alternatively reduce the size for character
Agent to be 25%, 50% and 75% of the original dataset while keeping
the test data unchanged (200 randomly generated poses). We present
both the prediction errors for the differential and subspace training
and reconstruction errors in Table 4. Indeed, the increasing of train-
ing data will boost the performance. However, the improvement is
not very significant when increasing the size over 75%.

4.4 Comparison
We first compare the accuracy of facial deformation approximation
with previous methods. Then we apply our method to body rigs and
compare the results with Bailey et al. [2018].

4.4.1 Facial Deformation Comparison. We compare our method
with linear blend skinning (LBS), PCA with linear regression (PCA),
local Cartesian coordinates training using our model (Local) and
Meyer et al. [2007] (KPSA). KPSA is an example-based deformation

Table 6. Mean and max reconstruction errors using our method compared
with Linear Blend Skinning (LBS), PCA with linear regression, our model
using local offset for training (Local) and Meyer et al. [2007] (KPSA). The
comparison is shown for a set of test poses from a well-animated production
sequence.

Agent Bull Matador
Mean Max Mean Max Mean Max

LBS 0.174 3.228 1.672 23.56 0.228 4.261
PCA 0.073 1.980 0.848 8.367 0.158 1.533
Local 0.072 0.689 0.521 5.779 0.155 1.106
KPSA 0.061 1.623 2.115 34.25 0.089 1.664
Ours 0.032 0.630 0.512 4.682 0.087 0.782

approximation method, which uses the deformation of key points
as input to PCA to derive vertex positions for the entire mesh. The
quality of the training data significantly influences the accuracy of
the deformation, and their method relies on evaluating the original
deformer stack to determine the key points on the fly. For the Local
model, we apply the same differential network with PCA directly
on the vertex local offsets without converting them into differential
coordinates. No subspace learning and reconstruction is required
for this model. We use it to compare the differential training and
evaluate the contribution of mesh representation. We use the same
set of randomly-generated training poses as used by our model to
train both KPSA and the Local model, and we perform evaluation on
the same well-animated sequences introduced in the last subsection.

We report the reconstruction error in Table 6 and provide visual
comparison in Fig. 8. As observed, our method outperforms the
other four methods in both quantitative and visualized results. We
use the result of LBS as a base-line as it does not provide any non-
linear deformation. From the heat map, we can see that the Local
model fails to capture the local deformation on the eyelids and the
mouth is shifted. This is because no neighbor vertex information is
embedded in the local offset, which makes it difficult for the network
to predict the local deformation. For KPSA, it fails to reconstruct the
deformation in the eyebrow region and the corner of the lips, even
though with a substantial increase in the number of key points (274)
and basis vectors (200) used in the original example. The relatively
poor performance is caused by the linear reconstruction of training
data, which could only provide a limited range and a fixed dimen-
sion for the approximated deformation. Once the target pose is out
of the dimension defined by the PCA, it is difficult for that method to
achieve high reconstruction accuracy. Additionally, the key points
still need to be driven by the original rig. In comparison, our method
can accurately capture the local deformation because of the error
characteristics of the differential coordinates. Due to the nonlinear
fitting capability of deep neural networks, our method can use ran-
domly generated data for training and approximate deformation
with a much larger range.

4.4.2 Body Deformation Comparison. We demonstrate our method
applied to body deformation approximation and compare our results
with Bailey et al. [2018]. We use character Agent as the example for
comparison. The character’s height is 200.25 cm. The body contains
4908 vertices and the rig includes 107 joints controls with hand

ACM Trans. Graph., Vol. 39, No. 4, Article 34. Publication date: July 2020.



34:10 • Steven L. Song, Weiqi Shi, and Michael Reed

Ground Truth LBS PCA Local KPSA Ours

Fig. 8. Comparisons for facial deformation between ground truth, Linear Blend Skinning (LBS), PCA with linear regression, local offset training, KPSA, and
our method using a well-animated pose from production.

joints excluded. We use the same training method and network
structures mentioned in Section 3.2 and generate random poses
for body rig as training data. Since the body rig does not include
numerical controls, we remove them from input and only vectorize
the joint controls. We use 245 PCs for the differential training and
select 118 anchor points that are well-distributed around all the
joints of the body. For Bailey et al. [2018], denoted as FDDA, we
follow their methods to train multiple small networks (2 hidden
layers with 128 units), each of which corresponds to a joint control
and predicts the nonlinear deformation of the neighbor vertices in
local coordinates. We generate 9800 random poses using the method
described in Section 3.3 as training data and perform the evaluation
using 189 poses from a well-animated production sequence for all
three models.

Mean Max
Ours 0.217 4.17

FDDA 0.263 6.41

We report the mean and
max reconstruction error in
the inline table and we show
deformation results in Fig 9.
The results indicate that our method outperforms the FDDAmethod,
especially for the maximum error. Using multiple networks for de-
formation approximation, FDDA suffers from discontinuity problem
on torso and left arm. We can observe high errors on the connecting
parts of the body since the vertices from the two parts are predicted
by different networks. The discontinuity is caused by the slight
change of joint scales in the evaluation sequence, which does not
show up in the training data. Due to the local joint input and small-
scale network, FDDA suffers from overfitting to the training data
and is sensitive to new values. Our method uses a deeper network
with a much larger input size, which increases the capacity and
makes the network less sensitive to the unseen scaling change of a
couple joints. Since our method also uses small networks for sub-
space training, there might be some anchors that are affected by the
scaling. But due to the least square reconstruction, the local error is
nicely distributed as low frequency error and is much less noticeable.

Increasing the network size for FDDA may improve the overall per-
formance, however evaluating a large number of deeper networks
(40 in our case) would cause significant performance downgrade.

Fig. 10 shows the error distribution of each model. As observed,
the error distribution of our model is compressed to the lower range
while the distribution of FDDA extends to large errors. Although
the two methods have similar mean error, this observation suggests
that our method can provide smooth approximation results with
smaller maximum errors, and avoids inappropriate deformation.

5 CONCLUSION
In this paper we have presented a learning-based solution to cap-
ture facial deformation for rigs with high accuracy. Our method
uses differential coordinates and a learned subspace to reconstruct
smooth nonlinear facial deformation. We have demonstrated the
robustness of our method on a wide range of animated poses. Our
method compares favorably with existing solutions for both facial
and body deformation. We also have successfully integrated our
solution into the production pipeline.
Our work has limitations that we wish to investigate in the fu-

ture. First, our method needs manually-selected anchor points for
subspace training and reconstruction. It would be interesting to
investigate methods for inferring the anchor points based on the
characteristics of the facial mesh and training poses. Second, as a
deep learning based approach, a model must to be trained for every
character with different rig behavior or mesh topology. We would
like to explore the possibility of integrating a high level super-rig
into our method to provide a single model for different characters.

REFERENCES
Steven S An, Theodore Kim, and Doug L James. 2008. Optimizing cubature for efficient

integration of subspace deformations. InACM transactions on graphics (TOG), Vol. 27.
ACM, 165.

Stephen W Bailey, Dave Otte, Paul Dilorenzo, and James F O’Brien. 2018. Fast and deep
deformation approximations. ACM Transactions on Graphics (TOG) 37, 4 (2018), 119.

Jernej Barbič and Doug L James. 2005. Real-time subspace integration for St. Venant-
Kirchhoff deformable models. ACM transactions on graphics (TOG) 24, 3 (2005),
982–990.

ACM Trans. Graph., Vol. 39, No. 4, Article 34. Publication date: July 2020.



Accurate Face Rig Approximation with Deep Differential Subspace Reconstruction • 34:11

Ground Truth FDDA Ours

Fig. 9. Comparisons for body deformation between the ground truth, Bailey et al. [2018] (FDDA) and our method using well-animated poses.

Jernej Barbič, Funshing Sin, and Eitan Grinspun. 2012. Interactive editing of deformable
simulations. ACM Transactions on Graphics (TOG) 31, 4 (2012), 70.

Christopher Brandt, Elmar Eisemann, and Klaus Hildebrandt. 2018. Hyper-reduced
projective dynamics. ACM Transactions on Graphics (TOG) 37, 4 (2018), 80.

Doron Chen, Daniel Cohen-Or, Olga Sorkine, and Sivan Toledo. 2005. Algebraic analysis
of high-pass quantization. ACM Transactions on Graphics (TOG) 24, 4 (2005), 1259–
1282.

Matthew Cong, Kiran S Bhat, and Ronald Fedkiw. 2016. Art-directed muscle simulation
for high-end facial animation. In Symposium on Computer Animation. 119–127.

Zhigang Deng, Pei-Ying Chiang, Pamela Fox, and Ulrich Neumann. 2006. Animating
blendshape faces by cross-mapping motion capture data. In Proceedings of the 2006
symposium on Interactive 3D graphics and games. ACM, 43–48.

Lin Gao, Jie Yang, Yi-Ling Qiao, Yu-Kun Lai, Paul L Rosin, Weiwei Xu, and Shihong
Xia. 2018. Automatic unpaired shape deformation transfer. In SIGGRAPH Asia 2018

Technical Papers. ACM, 237.
Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-image

translation with conditional adversarial networks. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 1125–1134.

Alec Jacobson, Ilya Baran, Jovan Popovic, and Olga Sorkine. 2011. Bounded biharmonic
weights for real-time deformation. ACM Trans. Graph. 30, 4 (2011), 78.

Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Har-
monic coordinates for character articulation. ACM Transactions on Graphics (TOG)
26, 3 (2007), 71.

Pushkar Joshi, Wen C Tien, Mathieu Desbrun, and Frédéric Pighin. 2006. Learning
controls for blend shape based realistic facial animation. In ACM Siggraph 2006
Courses. ACM, 17.

Tao Ju, Scott Schaefer, and Joe Warren. 2005. Mean value coordinates for closed
triangular meshes. ACM Transactions on Graphics (TOG) 24, 3 (2005), 561–566.

ACM Trans. Graph., Vol. 39, No. 4, Article 34. Publication date: July 2020.



34:12 • Steven L. Song, Weiqi Shi, and Michael Reed

FDDA Ours

Fig. 10. Comparison of error distribution for body deformation using well-
animated pose from production.

Ladislav Kavan, Steven Collins, and Carol O’Sullivan. 2009. Automatic linearization of
nonlinear skinning. In Proceedings of the 2009 symposium on Interactive 3D graphics
and games. ACM, 49–56.

Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O’Sullivan. 2008. Geometric skinning
with approximate dual quaternion blending. ACM Transactions on Graphics (TOG)
27, 4 (2008), 105.

Ladislav Kavan and Olga Sorkine. 2012. Elasticity-inspired deformers for character
articulation. ACM Transactions on Graphics (TOG) 31, 6 (2012), 196.

Ladislav Kavan and Jiří Žára. 2005. Spherical blend skinning: a real-time deformation of
articulated models. In Proceedings of the 2005 symposium on Interactive 3D graphics
and games. ACM, 9–16.

Meekyoung Kim, Gerard Pons-Moll, Sergi Pujades, Seungbae Bang, Jinwook Kim,
Michael J Black, and Sung-Hee Lee. 2017. Data-driven physics for human soft tissue
animation. ACM Transactions on Graphics (TOG) 36, 4 (2017), 54.

Petr Krysl, Sanjay Lall, and Jerrold E Marsden. 2001. Dimensional model reduction in
non-linear finite element dynamics of solids and structures. International Journal
for numerical methods in engineering 51, 4 (2001), 479–504.

Samuli Laine, Tero Karras, Timo Aila, Antti Herva, Shunsuke Saito, Ronald Yu, Hao Li,
and Jaakko Lehtinen. 2017. Production-level facial performance capture using deep
convolutional neural networks. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. ACM, 10.

Manfred Lau, Jinxiang Chai, Ying-Qing Xu, and Heung-Yeung Shum. 2009. Face poser:
Interactive modeling of 3d facial expressions using facial priors. ACM Transactions
on Graphics (TOG) 29, 1 (2009), 3.

Binh Huy Le and Jessica K Hodgins. 2016. Real-time skeletal skinning with optimized
centers of rotation. ACM Transactions on Graphics (TOG) 35, 4 (2016), 37.

Binh Huy Le and JP Lewis. 2019. Direct delta mush skinning and variants. ACM
Transactions on Graphics (TOG) 38, 4 (2019), 113.

John P Lewis, KenAnjyo, Taehyun Rhee,Mengjie Zhang, Frederic H Pighin, and Zhigang
Deng. 2014. Practice and Theory of Blendshape Facial Models. Eurographics (State
of the Art Reports) 1, 8 (2014), 2.

John P Lewis and Ken-ichi Anjyo. 2010. Direct manipulation blendshapes. IEEE
Computer Graphics and Applications 30, 4 (2010), 42–50.

John P Lewis, Matt Cordner, and Nickson Fong. 2000. Pose space deformation: a unified
approach to shape interpolation and skeleton-driven deformation. In Proceedings of
the 27th annual conference on Computer graphics and interactive techniques. ACM
Press/Addison-Wesley Publishing Co., 165–172.

Hao Li, Thibaut Weise, and Mark Pauly. 2010. Example-based facial rigging. In Acm
transactions on graphics (tog), Vol. 29. ACM, 32.

Yaron Lipman, David Levin, and Daniel Cohen-Or. 2008. Green coordinates. ACM
Transactions on Graphics (TOG) 27, 3 (2008), 78.

Lijuan Liu, Youyi Zheng, Di Tang, Yi Yuan, Changjie Fan, and Kun Zhou. 2019. Neu-
roSkinning: automatic skin binding for production characters with deep graph
networks. ACM Transactions on Graphics (TOG) 38, 4 (2019), 114.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J
Black. 2015. SMPL: A skinned multi-person linear model. ACM transactions on
graphics (TOG) 34, 6 (2015), 248.

Ran Luo, Tianjia Shao, HuaminWang,Weiwei Xu, Xiang Chen, Kun Zhou, and Yin Yang.
2018. NNWarp: Neural Network-based Nonlinear Deformation. IEEE transactions
on visualization and computer graphics (2018).

Nadia Magnenat-Thalmann, Richard Laperrire, and Daniel Thalmann. 1988. Joint-
dependent local deformations for hand animation and object grasping. In In Pro-
ceedings on Graphics interface’88. Citeseer.

Joe Mancewicz, Matt L Derksen, Hans Rijpkema, and Cyrus A Wilson. 2014. Delta
Mush: smoothing deformations while preserving detail. In Proceedings of the Fourth
Symposium on Digital Production. ACM, 7–11.

Bruce Merry, Patrick Marais, and James Gain. 2006. Animation space: A truly linear
framework for character animation. ACM Transactions on Graphics (TOG) 25, 4
(2006), 1400–1423.

MarkMeyer and John Anderson. 2007. Key point subspace acceleration and soft caching.
ACM Transactions on Graphics (TOG) 26, 3 (2007), 74.

Tomohiko Mukai. 2015. Building helper bone rigs from examples. In Proceedings of the
19th Symposium on Interactive 3D Graphics and Games. ACM, 77–84.

Tomohiko Mukai and Shigeru Kuriyama. 2016. Efficient dynamic skinning with low-
rank helper bone controllers. ACM Transactions on Graphics (TOG) 35, 4 (2016),
36.

Alexander Pentland and John Williams. 1989. Good vibrations: Modal dynamics for
graphics and animation. (1989).

Weiguang Si, Sung-Hee Lee, Eftychios Sifakis, and Demetri Terzopoulos. 2014. Realistic
biomechanical simulation and control of human swimming. ACM Transactions on
Graphics (TOG) 34, 1 (2014), 10.

Peter-Pike J Sloan, Charles F Rose III, and Michael F Cohen. 2001. Shape by example.
In Proceedings of the 2001 symposium on Interactive 3D graphics. ACM, 135–143.

Olga Sorkine. 2005. Laplacian mesh processing. In Eurographics (STARs). 53–70.
Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible surface modeling. In Sympo-

sium on Geometry processing, Vol. 4. 109–116.
Olga Sorkine, Daniel Cohen-Or, Dror Irony, and Sivan Toledo. 2005. Geometry-aware

bases for shape approximation. IEEE transactions on visualization and computer
graphics 11, 2 (2005), 171–180.

Robert W Sumner, Johannes Schmid, and Mark Pauly. 2007. Embedded deformation for
shape manipulation. In ACM SIGGRAPH 2007 papers. 80–es.

Qingyang Tan, Lin Gao, Yu-Kun Lai, and Shihong Xia. 2018a. Variational autoencoders
for deforming 3d mesh models. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 5841–5850.

Qingyang Tan, Lin Gao, Yu-Kun Lai, Jie Yang, and Shihong Xia. 2018b. Mesh-based
autoencoders for localized deformation component analysis. In Thirty-Second AAAI
Conference on Artificial Intelligence.

Robert Y Wang, Kari Pulli, and Jovan Popović. 2007. Real-time enveloping with rota-
tional regression. In ACM Transactions on Graphics (TOG), Vol. 26. ACM, 73.

Xiaohuan Corina Wang and Cary Phillips. 2002. Multi-weight enveloping: least-squares
approximation techniques for skin animation. In Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. ACM, 129–138.

Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan. 2015. Linear subspace
design for real-time shape deformation. ACM Transactions on Graphics (TOG) 34, 4
(2015), 1–11.

Thibaut Weise, Sofien Bouaziz, Hao Li, and Mark Pauly. 2011. Realtime performance-
based facial animation. In ACM transactions on graphics (TOG), Vol. 30. ACM, 77.

Hao Zhang, Oliver Van Kaick, and Ramsay Dyer. 2010. Spectral mesh processing. In
Computer graphics forum, Vol. 29. Wiley Online Library, 1865–1894.

ACM Trans. Graph., Vol. 39, No. 4, Article 34. Publication date: July 2020.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Skinning and Rigging
	2.2 Facial Rig and Deformation
	2.3 Learning-based Deformation
	2.4 Subspace Deformation and Model Reduction

	3 Method
	3.1 Preliminary
	3.2 Pipeline
	3.3 Implementation Details

	4 Evaluation
	4.1 Evaluation for Differential Training
	4.2 Evaluation for Subspace Training
	4.3 Results
	4.4 Comparison

	5 Conclusion
	References

