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Abstract

We consider the problem of creating integrated texture maps
of large structures scanned with a time-of-flight laser scan-
ner and imaged with a digital camera. The key issue in
creating integrated textures is correcting for the spatially
varying illumination across the structure. In most cases,
the illumination cannot be controlled, and dense spatial es-
timates of illumination are not possible. We present a system
for processing multiple color images into an integrated tex-
ture that makes use of the laser scanner return intensity and
the captured geometry, together with color balancing and
mapping of illumination-corrected images onto the target
geometry after filtering into two spatial frequency bands.

1. Introduction
Systems combining laser range scanners and color digital
cameras have become popular for obtaining 3D digital mod-
els. Models consisting of both geometry and relightable
textures (i.e., textures representing reflectances, rather than
reflected light) can be used to synthesize realistic images of
large objects, or structures, in new settings. Processing a
set of range and color images into an accurate, integrated
model is still problematic. Color images record intensities
that are a function of surface reflectance. However, knowl-
edge of the surface geometry and illumination are needed
to extract the reflectance. In this paper, we present a sys-
tem for reconstructing a seamless texture map representing
a spatially dense estimate of diffuse surface reflectance for
objects that are too large to capture with controlled lighting.

In previous work, high quality results have been demon-
strated for spatially varying bidirectional reflectance distri-
bution functions (BRDF) from systems with a high degree
of control over the view and lighting conditions [1]. Typi-
cally, tight control over conditions can only be maintained
when capturing relatively small objects, on the order of a
couple of meters or less in diameter. For scans of large
structures outdoors or of interior spaces in use, precise con-
trol of illumination is not possible.

Several approaches have been developed to form seam-
less, integrated texture maps. Techniques include using es-

timates of illumination that are either spatially or spectrally
sparse, calibrating capture devices to obtain response curves
not provided by hardware vendors, blending variations in
tone and luminance over low spatial frequencies, detect-
ing shadows or highlights in images using ratios of image
pixel values, color balancing overlapping images, and us-
ing spot measurements of materials. Our system combines
these ideas to produce a texture-mapped model from digi-
tal images and a time-of-flight range scanner. In addition
to combining ideas from other methods, our texture pro-
cessing system has the following unique features: 1) Seg-
mentation of captured images using laser scanner return in-
tensity into regions of different spectral illumination before
color balancing to account for complex lighting variations;
2) Adjustment of the integrated texture map to match local
measurements of reflectance.

We begin by reviewing previous work in synthesizing
texture maps from multiple digital images. We then de-
scribe our data acquisition. Next, we describe the main
pipeline of our system that adjusts color images using laser
scanner return intensity, color balances adjusted images,
and combines them using two passes with different spatial
frequencies. We end by demonstrating our results for a large
outdoor sculpture and for a vaulted interior space.

2. Previous Work
We assume as a starting point for creating a seamless texture
a geometric mesh and color images that have been geomet-
rically registered with respect to it. We also assume that the
transfer function of the camera is known, so that the image
values can be assumed to be adjusted to be linearly related
to the light from the scene. A summary of some of the meth-
ods for combining range images and registering 2D images
can be found in [2]. Given the input, the key elements in
forming the texture are correcting the color images for illu-
mination effects and then combining the results to eliminate
the appearance of image-to-image variations.

2.1. Illumination Correction
The red, green, and blue values of a color image are the
result of the interaction of the incident illumination, object



geometry, object reflectance and the camera transfer func-
tion. When illumination is known reliably, parameters for a
surface reflectance function can be estimated using the im-
age values [1].

When illumination cannot be controlled, an alternative is
to attempt to measure it at sparse (or even single) spatial lo-
cations. Yu and Malik [3] estimated illumination from sun,
sky and environment from photographs. Given these esti-
mates and a simple geometric model of a building, “pseudo
reflectances” were estimated for the building surface. De-
bevec et al. [4] measure incident illumination from high-
dynamic-range images of spheres of known reflectance. As-
suming each surface reflectance is a linear combination of a
small number of measured reflectances, a global illumina-
tion solution is run for a structure with the measured illumi-
nation as the light-source term. The coefficients of the linear
combination of reflectances for each location are iteratively
adjusted until the global illumination solution matches the
captured color images of the structure.

Rather than measure spatially sparse estimates of illumi-
nation for multiple wavelengths and directions, an alterna-
tive is to use the return intensity provided by many scanners
for each measured position. Baribeau et al. [5] used return
intensity for lasers at red, green and blue wavelength to es-
timate surface reflectance. Umeda et al. [6] modified this
approach to use the return intensity at a single wavelength.
After a calibration step to establish the non-obvious rela-
tionship between the return intensity and albedo for their
triangulation scanner, the spatial map of the return intensity
was used to adjust one channel—in their case the red chan-
nel, for a laser scanner operating with a red laser—of a color
image that captured surface variations at a much higher spa-
tial resolution. Assuming that the color balance of the cap-
ture camera adjusted for the spectrum of the incident light,
the ratio used to adjust the red channel from illuminated to
reflectance estimate was also used to adjust the green and
blue channels.

Sagawa et al. used corrected return intensity from a time-
of-flight (TOF) laser scanner as a monochromatic estimate
of reflectance at each vertex in a model [7]. Images of the
rendered reflectance per vertex model were used to register
color images to the model, but not to modify those color im-
ages. In using the return intensity from a TOF scanner, the
relationship between depth, albedo and orientation needs to
be carefully calibrated. As demonstrated in studies to eval-
uate TOF scanner accuracy, such as [8] and [9], the pro-
cessing of the return signal to produce an accurate depth
produces a return intensity that is not predicted by models
of light reflection.

One problem with assuming that the camera color bal-
ance corrects the incident illumination to white is that the
color of incident illumination spatially varies. Kawakamiet
al. [10] recently studied this problem for outdoor scenes.
They developed a method that attempts to correct chro-
maticity variations in images due to illumination chromatic-

ity variations using only image data. A complete model ac-
counting for these chromaticity variations was developed,
rather than just applying the ratio for one channel to the
other two.

A final alternative is not to correct for illumination at all,
but to rely on methods of adjusting overlapping images for
consistency to produce an acceptable texture map [11, 12,
13].

2.2. Combining Images
Even if the original color images are adjusted to remove il-
lumination effects, image-to-image variations will persist.
Rushmeier and Bernardini [14] proposed a global color bal-
ance scheme to adjust all overlapping images to make cor-
responding points match as closely as possible. Agathos
and Fisher [11] proposed a similar approach, but allowed
crosstalk between the color channels.

Uniform adjustments across images improve balance,
but seams may be apparent, where different parts of the ob-
ject are texture mapped from different sources. Bernardini
et al. [15] avoid such seams by blending all possible color
images that project on a point. This requires precise align-
ment of images to avoid ghosting artifacts.

An alternative adopted by Callieri et al. [12] is to com-
pute a color difference correction that would equalize the
difference between neighboring patches, and then spatially
diffuse that correction through the texture map. The idea
of combining a low-spatial frequency correction factor with
texture containing high spatial frequency features is sim-
ilar to Burt-Adelson image mosaicking [16]. Inspired by
the work of Burt and Adelson, Baumberg [17] developed a
method of combining low and high spatial frequency bands
of color images to average out color variations, while cap-
turing detailed high-frequency features without ghostingef-
fects.

Troccoli and Allen [13] introduced a method for the ad-
justment of overlapping color images projected on a single
geometry, so that they are consistent with each other. This
is performed without removing all illumination effects, but
rather using relighting. To adjust an image B to appear to
be illuminated as image A, the ratio of the image values for
different surface orientations is learned in the overlap region
and then applied to the rest of B.

Another approach to enforcing consistency across seams
is to view texture map construction as a classification of
each pixel as one of a small number of material types
[1, 4, 18]. Pixels that might be adjusted to slightly dif-
ferent reflectance values in different images are likely to
be assigned the same material. This approach works well
when images are well aligned and the number of materials
is small.

In our system, similar to the work by Umeda et al. we use
the return intensity to adjust the color image values. This al-
lows us to deal with illumination levels that vary across the



scene. Recognizing that the color of illumination can vary
within an image, we introduce a novel technique to use the
return intensities to segment the images into regions that can
have separate color adjustments. Using the previous method
by Rushmeier and Bernardini, we perform a global color
balance on the segmented images. We adopt the approach
used by Baumberg combining the corrected color images in
a way that more closely follows the Burt-Adelson approach
for 2D color imaging. Finally, we introduce a novel step
that uses of spot measurements to adjust the texture.

3. Data Acquistion
Our method for integrating texture maps assumes a known
geometric mesh, aligned color images, and a model for how
scanner return intensities relate to surface albedo. In this
section, we describe how we acquire and process the pre-
liminary data.

Mesh and Image Capture and Processing:To obtain the
mesh and aligned images, we use existing hardware and
software. We obtain range images with a Cyrax 2500 TOF
range scanner. We align and integrate the scans into a single
triangle mesh using the MeshLab [19] software, and seg-
ment the mesh into patches for a texture atlas. We obtain
color images with an Olympus C8080WZ digital camera.
For high dynamic range (HDR) images, we acquire images
at multiple exposures. We process these into a single image
using HDRShop [20]. We align the color images to the ge-
ometry by picking corresponding points on the 2D images
and 3D model, and then computing the camera model using
Tsai’s algorithm [21].

Relating the Return Intensity to Albedo:Our method re-
quires a model relating the return intensity to the diffuse
albedo of the scanned surface at the laser light frequency
(532 nm for the Cyrax). We treat the Cyrax 2500 scanner
as a “black box,” and perform controlled experiments to de-
termine a model of the return intensity with respect to the
distance of the reflecting surface,z, the angle of incidence
of the laser beam,θ, and the diffuse albedoα. By con-
straining this model to be invertible, we can use it to infer
the albedo.

To determine the dependence with respect to albedo, we
scan the GretagMacbeth ColorChecker chart at different
depths and orientations. The chart provides calibrated re-
flectance values. From these, we can build a model for the
return intensity,R. Although the parametric model we de-
termine is for the particular scanner we used, other scanners
could be used within our framework.

From our measurements we have noted that the return
intensity peaked at around17 − 20m, as also observed by
Sagawa et al. [7], who used an earlier Cyrax model. We
also observed a relatively weak dependence to the incidence
angle,θ. Unlike Sagawa, et al. [7], we explicitly measure
the dependence of the return intensity with respect to the
cosine of the incident angle.

In designing our return intensity model, we accounted
for the above observations, along with the requirement that
the model be invertible. We use the following parametric
model:

R = f(α, z, θ) = f(α, z)g(θ), (1)

where,
g(θ) = a1 cos θ + a2, (2)

with a1 + a2 = 1, and

f(α, z) = p1(z)α + p2(z), (3)

wherep1(z) andp2(z) are quadratic functions of depth,z,
each with three unknown parameters.

We first determine the parameters ofg(θ), using mea-
surements at a fixed distance of a cylindrical surface with
constant albedo. The parametersa1 anda2 are determined
using least squares and then are normalized such that their
sum is 1. Subsequently, we can determine the six parame-
ters describingp1(z) andp2(z). We scanned the MacBeth
chart at four different depths (5m, 9m, 17m, and33m), and
at four incidence angles (0◦, 30◦, 45◦, and60◦). The av-
erage, measured return intensity of each of the 24 patches
of the MacBeth chart at a particular distance and incidence
angle provides a single constraint to the following equation:

p1(z)α + p2(z) =
R

g(θ)
, (4)

whereg(θ) is known, having determined its parameters be-
fore. Given the 384 measurements, we can then reliably de-
termine the six parameters ofp1(z) andp2(z), again using
least-squares. With this model at hand, we can estimate the
albedo of the surface, which can be used to perform color
correction of the captured photographs.

4. Proposed System
Our system for reconstructing an integrated texture map
consists of four steps: 1) “Unlight” the color images using
the albedo estimated from the return intensity; 2) Balance
the colors between segmented versions of the unlit images;
3) Combine all of the color balanced images, and 4) Adjust
for spot measurements of reflectance.

4.1. “Unlighting” Captured Images
With the model presented in Section 3, we can estimate the
albedos for the sampling points in the range images from the
return intensity. Similar to [6], our goal is to adjust the green
channel (corresponding to the laser wavelength of 532 nm)
to match these albedo estimates. The resolution of the range
images is much lower than the color images. In our sys-
tem, the resolution of range images will be from 300x300
to 1000x1000, and for color images it is 3264x2448. Our
approach is to calculate the ratio of the low-frequency part



of the green channel of the HDR images to the estimated
albedo, and use this ratio to correct all color channels.

Specifically, we begin by estimating the albedo,α, at
each point in the range image using Eq. 4. Next, we com-
pute a low-frequency version of the green channel of the
HDR images by Gaussian filtering and store the result asḡ.
We then project the points from the range image into the
HDR image. Because the projection of points in the range
image is not evenly distributed on the HDR image plane,
for each HDR image pixel, we interpolate values ofα from
the range image. We use the 3D point projections within a
window the size of the Gaussian filter we used on the green
channel, and weigh the values using inverse pixel distance.
Given the values ofα andḡ at each pixel, we form the ra-
tio ḡ/α. At this step, we just simply multiply all the color
channels by this ratio for each pixel. Unlike [6], we save the
ratio for every pixel for further processing.

4.2. Color Balancing
To adjust all overlapping images to have the same color and
luminance, we use a variation of the color balance method
described in [14]. We densely sample the model to find
corresponding points in the various images. We form a set
of linear equations for an adjustment value for the red, green
and blue channels in each image. Our dense sampling gives
us an overconstrained system, and a least squares solution
is found.

Because of the variation of the spectrum of light in the
scenes we consider, a single adjustment value per image is
not adequate. We note that the ratios computed in 4.1 in-
dicate the variation of the overall light level in the scene.
Regions of high illumination will generally be more influ-
enced by the spectrum of the direct light source. Regions
of low illumination will be more influenced by the spec-
trum of indirect light. With the recognition that the light
level indicated in the ratio image indicates regions of poten-
tially different illumination spectra, we segment each image
based on the ratio image values. This segmentation is per-
formed using thek-means clustering algorithm on the ratio
image values. Rather than running the color balance on full
images, we run the color balance procedure treating each
image segment independently.

4.3. Combining Images
After color-balancing the return-intensity adjusted images,
we need to determine the texture of the individual, near-
flat, geometric patches to form the complete texture map
of the object. Each individual patch may be visible from
multiple camera views, and hence would project to multiple
adjusted images. To combine the overlapping images we
use a technique similar to [17]

The color-balanced, adjusted images are decomposed
into two frequency bands, one low-pass and the other high-
pass. This is achieved using Gaussian filtering, where the

width is of the same order as the misalignment between the
color images and their corresponding scans. In determining
the final texture of a patch, we first construct its low-pass
and high-pass versions and then simply combine them. In
our approach, the former is the weighted average of the low-
pass versions of the color images in which a patch projects.
The weights are a combined function of the angle of the
normal of a point on the geometry with respect to the cam-
era viewing direction, the distance of that point from the
camera center, and its distance from an occluding boundary.
The weighted averaging of low-pass images prevents the ap-
pearance of seams. The high-pass version of the patch tex-
ture is determined by choosing the high-pass texture colors
from the image with the highest associated weight. Com-
bining the “best” high-pass texture with the weighted av-
eraged low-pass colors, leads to a global texture map with
detailed features, but with minimal ghosting and very few
seams.

4.4. Color Adjustment to Local Measurement
Our aim is to make the texture as close to the true diffuse
color as possible. Our images to this point have been pro-
cessed as though the camera color balance was accurate
over most of each image. This is generally not the case.
We can measure the diffuse color with an optical device.
In our system we use the XRiteColor Digital SwatchBook.
For each sample, the SwatchBook can output a reflectance
spectrum at wavelengths from 400nm to 700nm in 10nm
steps. We convert this spectrum into RGB color space. The
number of points we can measure is quite limited however,
and possibly there will be fairly large area that we cannot
reach and measure. Our problem is to use limited sample
data to adjust the entire texture.

We note that after processing there are residual irregu-
larities in the texture that are functions of both location and
the specific color value. To adjust the texture values then we
account for the distance from each location measurement in
both physical 3D space and in color space. We compute a
correction for each texture pixel as a weighted average of
the spot measurements, where the weights are the inverse
of the product of Euclidean distance and difference in the
color space. We calculate the ratio at each color channel,
and to prevent noise, we calculate the color difference us-
ing Gaussian-filtered texture.

5. Results and Conclusion
We present results for two large objects captured under chal-
lenging lighting conditions. Figure 1 shows data for an
outdoor sculpture of a dinosaur. Nine photographs were
obtained under natural lighting on different days. Sources
of lighting variations include direct sun, self-shadows, self-
interreflections between the sculpture and its pedestal, shad-
owing by a neighboring building, skylight and reflections
from the ground which was snow covered in one case, and



was green grass in another. The figure shows captured ge-
ometry, return intensities, color images, return intensity ad-
justed color images, the albedo ratio images, and color bal-
anced images. The top row of Fig. 3 shows the effect of
the within image color balancing. The camera color white
balance did not adequately adjust for the blue tone of the
illumination. Since we could not access the sculpture with
the X-Rite device, final texture is adjusted based on images
of the sculpture with a grey scale card. Renderings of the
final model are shown in Fig. 6.

Figure 2 shows data for an indoor Guastivino vault.
When we captured the 23 HDR photographs used (5 ex-
posures per image), the vault it was illuminated by small
halogen lights mounted a few inches from the vaulting, flu-
orescent light from neighboring hallways and natural day-
light from several windows. The vault ceiling geometry is
shown in Fig. 2a. Figure 2b shows the same series of pro-
cessing steps as shown for the dinosaur in Figure 1. The
second row of Fig. 3 shows the effect of the within image
color balancing for the vault. Figure 4 shows the result of
the two-frequency band image combination, compared to
using all images or choosing one only. The red tint of the
processed unlit images show that the camera color balance
did a poor job adjusting to white. Figure 5 shows the loca-
tions of spot measurements obtained with the X-Rite device,
and the true color is shown on the measurement locations.
Renderings of the final model are shown in Fig. 7. Some
color variations persist. The overly green results in the ar-
eas near the halogen lights are the result of the HDR images
failing to capture the complete color content.

Conclusion: We have described and demonstrated a
system for reconstructing seamless texture maps for large
structures scanned under uncontrolled illumination. We use
the scanner return intensity to estimate albedo, and segment
images into areas of different illumination. We use a two-
spatial frequency approach to combine the images, and then
adjust the resulting texture map with spot measurements of
reflectance.

We thank the Peabody Museum at Yale for permission
to scan the Torosaurus sculpture used our examples. This
work was funded by NSF grant CCF-0528204.
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Figure 1. ROW 1: Scanned geometry; ROW
2: Laser scanner return intensity (green im-

plies invalid region); ROW 3: Captured im-
ages; ROW 4: Corrected images using return

intensity; ROW 5: Ratio of captured images
to return intensity; ROW 6: Color-corrected
images using our segmentation-based algo-

rithm.

(a)

(b)

Figure 2. (a) The complete geometry model

of a vaulted ceiling. (b) ROW 1: Scanned ge-
ometry; ROW 2: Laser scanner return inten-
sity; ROW 3: Captured images; ROW 4: Cor-

rected images using return intensity; ROW
5: Ratio of captured images to return inten-
sity; ROW 6: Color-corrected images using

our segmentation-based algorithm.



(a) (b) (c)

Figure 3. Color correction of the return-intensity-adjusted images of the dinosaur sculpture (top row),
and of the vaulted ceiling (bottom row). (a) The color-corrected images, where only one set of color

coefficients was used for the whole image. (b) The result using our approach, where each image is
segmented into seven regions depending on the ratio of the original color image and the scanner
return intensity. Note that the colors in these images are more uniform, indicating that the effect of

the color of the illuminant has been reduced. (c) The difference between the left and middle column
images. Note how our approach adjusts the colors differently in regions of different illumination.
(The image differences have been scaled by 8 times in order to be more easily visible. They are of

the order of 10% of the dynamic range of the images.)

(a) (b) (c)

Figure 4. Comparison of our two-frequency-band, texture-mapping approach to other image mixing
methods: (a) Texture of part of the vaulted ceiling created with our approach, where color-corrected
images are separated into two frequency bands. The low-pass version of the images is mixed us-

ing weighted averaging to form the low-frequency component of the final texture map. The high-
frequency component of the texture map is formed by the high-pass version of the image with the

highest weight. Note how the resulting texture created by our approach preserves details without
blurring or ghosting and without creating seams. (b) The output texture created using weighted-
averaging to mix the original color-corrected images. Note the relatively blurred texture and the

“ghosting” effects. (c) The resulting texture when it is simply created by choosing the original im-
age with the highest weight. Note the seams and breaks in its appearance.



Figure 5. An image showing where on the surface of the vaulted ceiling the diffuse color measure-
ments were made using the XRiteColor Digital SwatchBook. The dots on the surface show both the

position and the measured color at different parts of the geometry. Note the differences between the
measured and texture-map colors (as also indicated in the inset, which shows how a measurement
was made). We use these spot measurements to correct the final texture map.

Figure 6. Three rendered images of the color-corrected, texture-mapped dinosaur sculpture. (Note

that the black regions on the object are due to a lack of image or geometric information. Those
regions were inaccessible during the data acquisition process.)

Figure 7. Three rendered images of the color-corrected, texture-mapped, vaulted ceiling. (Note that
the black regions on the object are due to a lack of image or geometric information. Those regions

were inaccessible during the data acquisition process.)


