
Conservative Radiance Interpolants for Ray Tracing

Seth Teller Kavita Bala Julie Dorsey

MIT Imagery and Simulation Group�

Abstract

Classical ray-tracing algorithms compute radiance returning to the eye along one or more sample
rays through each pixel of an image. The output of a ray-tracing algorithm, although potentially
photorealistic, is a two-dimensional quantity { an image array of radiance values { and is not directly
useful from any viewpoint other than the one for which it was computed.

This paper makes several contributions. First, it directly incorporates the notion of radiometric
error into classical ray-tracing, by lazy construction of conservative radiance interpolants in ray space.
For any relative error tolerance �, we show how to construct interpolants which return radiance
values within � of those that would be computed by classical (e.g., Whitted) ray-tracing. The second
contribution of the paper is an explication of the four sources of aliasing inherent in classical ray
tracing { termed gaps, blockers, funnels, and peaks { and an adaptive subdivision algorithm for
identifying ray space regions guaranteed to be free of these phenomena. Finally, we describe a novel
data structure that exploits object-space coherence in the radiance function to accelerate not only
the generation of single images, but of image sequences arising from a smoothly varying sequence of
eyepoints. We describe a preliminary implementation incorporating each of these ideas.

1 Introduction

One long-standing goal of visual simulation is to allow users to traverse realistically illuminated, geo-
metrically detailed environments at interactive rates. Given a scene description, comprised of surface
geometry and re
ectance properties, and some speci�cation of light sources, a class of techniques known
as \global illumination algorithms" computes equilibrium distributions of radiant energy throughout the
scene. That is, they compute some representation of radiant energy incident upon, or emerging from,
every surface element. Radiosity, Ray-Tracing, and hybrid algorithms span a spectrum, in the way that
they trade freedom of the synthetic viewpoint against the degree of complexity of the light sources,
surface geometry, and surface re
ectance properties.

1.1 Solution Complexity vs. Viewing Freedom

Radiosity algorithms, at one extreme, estimate radiosity (in units of power per area) on every input
surface [11, 26]. Radiosity algorithms are usually formulated for polyhedral scenes, and can correctly
handle only ideal di�use emitters and receivers. Since the human visual system is very good at detecting
and interpreting highlights that result from the directional variation of radiance, this representation
is restrictive. However, since the computed solution (essentially a radiometric annotation of the input
scene geometry) is view-independent, it is meaningful from any synthetic viewpoint.

Ray tracing algorithms, at the other end of the spectrum, estimate radiance (in units of power per
source area per receiver steradian) for one or more rays through each pixel of an image [29, 10]. Radiance
is a four-dimensional quantity over each surface, whose computation involves di�use and specular e�ects,
as well as re
ection, transmission, and secondary emission e�ects. The radiance computation is therefore

�fseth,kaybee,dorseyg@graphics.lcs.mit.edu

1

extremely complex { so complex, in fact, that ray tracing algorithms �x the synthetic viewpoint and
viewport, requiring them as additional inputs, and compute radiance only for the speci�ed viewpoint.
Thus, the output of a ray tracing algorithm, although potentially photorealistic, is a two-dimensional
quantity { an image array of radiance values { and is not directly useful for any viewpoint other than
the one for which it was computed.

A class of hybrid techniques has arisen that compute more general representations of the radiance
function { typically, some discretized approximation to the radiance and/or irradiance �eld at each
surface, or in space [27, 28, 25, 24, 4]. However, these representations have typically been extremely
expensive to compute and store. Thus, the important visual cues provided by these algorithms (shadows,
smooth shading, transparency, re
ections, etc.) have not been achievable in interactive visual simulation
applications.

1.2 Solution Error vs. Running Time

Rendering is a numerical simulation problem, and as such is subject to various sources of error. Given a
�xed scene geometry and re
ectance model, another long-standing problem in computer graphics is to
achieve a controllable tradeo� between the time expended computing a solution, and the �delity of that
solution. Hierarchical radiosity techniques [13] explicitly incorporate solution error via lazy enumeration
of coupling coe�cients according to a per-coe�cient error estimate. Sophisticated error bounds for
radiosity solutions have also been described (e.g. in [18]). Ray tracing and hybrid algorithms have
historically employed supersampling or distribution sampling to decrease solution error.

1.3 Our Approach

Even using today's most powerful workstations, it is overambitious to attempt to represent the radiance
distribution for all surfaces, from all viewing directions, for a non-trivial scene. However, it is feasible to
compute radiance lazily for a small predictive neighborhood around the synthetic viewpoints exercised
in a real visual simulation application { thereby exploiting both the visibility coherence of an observer
moving through the scene, and the smoothness of the radiance �eld. We describe a system for radiance
computations based on a number of novel ideas:

� An error tolerance � directly controls the tradeo� between solution error and rendering time;

� An adaptive, per-surface radiance interpolant captures the radiance (angular
ux density)
leaving the surface to within �, for a lazily-constructed envelope of directions;

� Radiance interpolation is performed by quadrilinear interpolation in ray space;

� The four causes of aliasing in classical ray tracing1 { gaps, blockers, funnels, and peaks { are
identi�ed, and ray tree topologies and isotopies de�ned. A conservative predicate identi�es
isotopies; ray trees of like topology are interpolated only when they form an isotopy.

� The fundamental visibility operation in ray tracing, ray casting, is explicitly decoupled from
the fundamental radiometric operation, integration of irradiance, yielding a sampling scheme that
su�ers absolutely no unrecognized geometric aliasing, and strictly bounded radiometric aliasing,
at every pixel.

2 Previous Work

Ray casting was introduced in 1968 as a technique for visibility determination and the rendering of
hard shadows [2]. Classical ray tracing was proposed in 1980 to simulate re
ection and refraction

1We do not consider texture mapping in this work.

phenomena [29]. This approach identi�es only those paths along which radiance reaches the eye from
the speci�ed light sources or background [10]. Given a scene description comprised of implicit primitives
(each with associated material properties), one or more local or in�nite point light sources, an ambient
light level, and a synthetic eyepoint, view frustum, and viewport, the ray tracing algorithm computes a
representation of the radiance returning to the eye along a set of sample \eye rays" through each pixel.
Radiance values are computed by recursively spawning a ray tree for each eye ray [10]. Exemplary
pseudocode for a backward ray-tracer can be found in [14]. A host of re�nements and generalizations
have since been proposed [10, 7].

2.1 Ray Tracing Acceleration

Ray tracing algorithms perform an expensive operation { �nding the �rst intersection of a ray with
some scene object { tens or hundreds of times per image pixel, and are therefore extremely compute
intensive. These algorithms can be accelerated by making individual intersection tests faster via spatial
subdivision or creative use of a z-bu�er; by amortizing the per-ray intersection cost with a more general
ray representation; or by spawning fewer rays via adaptive sampling or importance sampling (see [10],
pp. 204-5 for a taxonomy of such techniques current to 1989).

Most ray tracing acceleration methods have concentrated on reducing or amortizing the cost of ray
casting. This has been done by casting bundles of rays, as did beam-tracing for polyhedral scenes [15]
and cone-tracing [1]; employing a �xed-grid [6] or adaptive [8] 3D spatial hierarchy of scene objects; and
employing a 5D hierarchy associating ray sets and the object(s) encountered by rays in the set [3].

While many researchers have concentrated on reducing the per-ray intersection cost, relatively few
published algorithms have the intent of reducing the number of rays cast. Popular public domain ray
tracers such as RayShade [17] use an adaptive subdivision technique based on variance of screen space
radiance samples. This is a necessary, but not su�cient, criterion for avoiding aliasing.

Some researchers have addressed the problem of generating image sequences for scenes whose geome-
try [9] or material properties [22] change with time. To the authors' knowledge, however, no existing work
explicitly addresses the generation of ray-traced images from a sequence of smoothly varying eyepoints.

2.2 Truncation Error

When gathering irradiance on a given surface, classical ray tracing accounts for irradiance only along a
�nite set of directions: from all point light sources; along the re
ection direction of the sample ray; and
along the transmission direction of the ray. Moreover, recursive ray spawning is suppressed when the
ray tree depth (weight) exceeds (falls below) some prespeci�ed threshold. This \truncated" integration
can give rise to error by excluding ray paths along which signi�cant radiance may
ow (e.g., light
bouncing among many surfaces before reaching the eye). Researchers have addressed this source of error
using distribution ray tracing [5], forward ray tracing [10] and path tracing [16]. This paper does not
address truncation error, as our system is designed to compute an �-approximation to the radiance values
computed by classical ray tracing.

3 Algorithm Overview

This section presents a brief overview of our algorithm. With every object we associate a lazily con-
structed representation of radiance from the object, which we call a \radiance interpolant." To generate
an image, an eye ray is cast through each pixel of the associated viewport. If the eye ray hits no object,
a background radiance is returned. Otherwise, the eye ray hits an object, and a radiance interpolant
for the object is lazily re�ned through analytic ray tracing operations. This interpolant construction
may or may not succeed. If it succeeds, a radiance value for the original eye ray is produced through
quadrilinear interpolation of radiance values stored with the interpolant. Otherwise, a radiance value is
produced by tracing the original eye ray through the scene as in classical ray tracing.

4 Aliasing

eye
light source

eye
light source

blocker

(a) (b) (c)

gap

eye
light source

(d)

p

p

eye

sparse medium

dense medium

Figure 1: Aliasing errors due to insu�cient radiance sampling.

There are four ways in which aliasing errors can arise in classical ray tracing. They are depicted in Figure
1, with sample rays shown as solid lines, and dashed lines depicting signi�cant radiance paths/nonpaths
missed due to insu�cient sampling. First, gaps might not admit sample ray paths, yet admit intervening
rays (Figure 1-a). Second, blockers might admit sample rays, yet block intervening rays (Figure 1-b).
(Horizons or terminators occur when an object \self-blocks," obscuring paths from its own surface to a
light source.) Third, when traversing an interface from a dense to a sparse medium (e.g., from water to
air), sample rays might be totally internally re
ected, whereas intervening rays are transmitted (Figure
1-c). We call this source of aliasing a funnel, because the set of transmitted rays through a dense/sparse
boundary have directions which fall within the Gauss map of all normals on the boundary, Minkowski-
producted (roughly, expanded) by a cone whose opening angle is determined by the ratio of indices of
refraction of the involved media. Finally, an intervening ray might encounter a peak in radiance centered
on a specular highlight (for example, at point p in Figure 1-d). Radiance peaks occur at extremal paths,
that is, those of locally minimal or maximal optical length (see [20] for a discussion of such paths in the
context of ray tracing algorithms).

5 Ray Trees

Rays spawned by a ray tracing algorithm not only have geometric attributes, but can also be thought of
as \carrying" radiance, a physical quantity. Moreover, we have seen that as a sample ray changes position
or direction, the radiance along that ray (as computed by classical ray tracing) changes smoothly, except
at discontinuities caused by gaps, blockers, or funnels. Thus, it should be possible to interpolate between
radiance samples to produce values which are weighted averages of those associated with the samples.
When is it sensible to interpolate radiance samples?

The spawning of a ray can be thought of as inducing a ray tree [10] (Figure 2). Each tree leaf
corresponds to an aggregation of direct illumination from a light source or the background, is labeled
with a unique identi�er for that source, and stores the radiance collected from the source. Each internal
node corresponds to a recursively spawned ray, traced to gather radiance re
ected by, or transmitted
through, some scene object. Such nodes are labeled with a unique identifer for the intervening object, and
store the radiance gathered from the object (in the �gure, ray paths are marked with arrows indicating
the direction along which radiance is gathered). Each ray tree edge corresponds to a ray cast (i.e., a
ray-scene intersection operation); we �nd it useful to consider ordered lists of edges as representing a
sequence of such calls.

L1
L2

L3

 S2

 S3

L1 L2 S2

L1 L2

S3

S1

L3

background

background

bkgdbkgd

 S1

reflection ray
shadow ray

transmission ray

sample ray

Figure 2: The ray tree induced by a spawned eye ray.

5.1 Ray Tree Isomorphisms

Two ray trees A and B are isomorphic if there exists a one-to-one correspondence � between their nodes,
and if, whenever some node NA in A has as its kth subtreeMA, its corresponding node �(NA) in B has
as its kth subtree the node �(MA). We say that isomorphic ray trees have the same topology. Together,
every surface point and viewing direction of that point (for a �xed surface, a 4D range) induce a ray tree
of some topology. A crucial observation is that radiance changes discontinuously only when the
topology of the ray tree changes. Imagine a 2D pencil of rays through a neighborhood of points
on some directly illuminated surface (Figure 3-a). An observer experiences a radiance discontinuity
when viewing the hard shadow edge cast by the occluder. Radiance discontinuities occur under purely
directional variation as well (Figure 3-b). Consider a 2D pencil of rays through a �xed point p on some
indirectly illuminated surface. An observer viewing p from varying directions will experience a radiance
discontinuity when the re
ection of object S2 starts (or stops) containing p.

light source L

(a)

 S1

BA

light source L
(b)

 S1

 S2

A B
 S2

p

L S2

S1

bkgd

B

S2

S1

bkgd

A A

S2

S1

L

B

bkgd

S1

bkgd

Figure 3: Radiance discontinuities occur where the ray tree topology changes.

5.2 Ray Isotopies and Radiance Interpolation

Intuitively, if one is to avoid interpolating across a radiance discontinuity, one must average only samples
which have been derived from isomorphic ray trees. This is a necessary, but not su�cient, condition
for discontinuity-free radiance interpolation since intermediate rays may induce ray trees that are not
isomorphic to those of the sample rays (cf. Figures 1-a, b and c). A su�cient condition is that all rays in
the ray space convex hull of the sample set induce isomorphic ray trees, banishing any radiance discon-
tinuities there. We call such a set an isotopy of rays. The following subsections detail the identi�cation

of isotopic regions for a scene comprised of convex objects. Recall that ray isotopies can be interrupted
only by gaps, blockers, and funnels.

Detecting Gaps: Since convex objects cannot have holes, any two sample ray trees which span a gap
must encounter distinct objects, and can not be isomorphic. Thus, the presence of gaps inside a ray
subregion can be detected by comparing the topologies of the region's extremal ray trees.

 B

 C

 A (b) A

 B

 C

(a)

Figure 4: Establishing the absence (a) or potential presence (b) of blockers.

Detecting Blockers: We detect blockers using a dynamic version of shaft culling [12]. Shaft culling
was originally developed for use in a radiosity algorithm based on ray-casting.

Our implementation uses kd-trees to partition the scene hierarchically for e�cient ray casting [10].
Every ray between two points A and B propagates through some well-de�ned set of cells in this spatial
subdivision. Every two cells in the subdivision have some \least common ancestor"; that is, the deepest
(smallest) cell which contains them both. Thus, given the extreme rays in some convex ray space region
R, all of which connect scene objects A and B, we search the least common ancestor (shown in bold in
Figure 4-b) of all cells touched by the rays. If the least common ancestor has no descendants other than
A or B, by convexity it must be true that no ray in the interior of R meets any object other than A or
B. If its descendants contain objects other than A and B, we apply shaft culling against the bounding
boxes of these objects to test for potential blockers.

Note that this blocker identi�cation technique is conservative, i.e., it sometimes reports objects that
are not truly intersected by the rays. However, it always identi�es objects that are truly blockers (such
as the sphere C in Figure 4-b).

Figure 5: Totally-internally re
ecting (TIR) samples may interpolate to non-TIR samples (bold and
dashed, at left), and vice-versa (right), even when all geometric primitives are convex.

Detecting Funnels: Finally, we address the issue of detecting funnels; that is, regions of ray space in
which extremal samples are (are not) totally internally re
ecting across a dense/sparse interface, whereas
interpolated samples are not (are) totally internally re
ecting (cf. Figure 1). Unfortunately, it is easy to

exhibit instances of both positive and negative funnels (Figure 5); we know of no simple, general method
for detecting their presence. However, a conservative subdivision strategy preserves the correctness of
our approach: we simply label any raytree containing a dense/sparse interface as non-isotopic. This may
cause excessive sampling; however, it will never allow interpolation across a funnel.

We note that existing beam-tracing [15] cone-tracing [1], and pencil-tracing [23] algorithms encounter
this problem in a di�erent form; refraction causes linear descriptions of ray bundles to become nonlinear.
Each of these algorithms employed geometric approximation techniques to trace refracted ray bundles,
but showed no bounds for the geometric and radiometric errors so incurred.

5.3 Bounding Interpolant Error

Ray tree leaves correspond to a recursion termination (zero gathered radiance), a ray's escape from
the scene (to background, collecting constant gathered radiance), or the evaluation of radiance from a
point light source (Phong shading, non-constant radiance). The latter cases, appropriately weighted, are
the only sources of radiance at the root of the ray tree. Thus, to bound the radiance that could arise
from any query ray in some isotopy, we must bound the radiance computed at the ray tree leaves, then
multiply these bounds by the aggregate weight of the subtree (note that this weight is the same for all
ray trees in the isotopy).

(a) (b)

= Ri

= Si

light source

Li

Ni Ri

Si
pi

light source

Li

Ni Ri

pi

Si

Figure 6: A radiance peak can exist only if the re
ection directions Ri and the sample directions Si are
not separable on the Gauss map.

The radiance function is unimodal for a �xed viewing position or a �xed viewing direction. However,
when the sample direction varies, radiance can have many maxima. Bounding the radiance exactly
within some ray isotopy could be done by identifying a ray within the region for which N �H (or N �L) is
maximized, then evaluating radiance along that ray. However, again we formulate a simpler, conservative
strategy. We simply subdivide until any maxima of N �H are banished from the interior of the isotopy.
We do so by analyzing the Gauss map of the surface normals (Figure 6).

For an isotopic sample set Si, de�ne the sample rays' points of intersection with some primitive as
the pi, and the induced light vectors Li and normals Ni. A radiance peak can occur only if there exists
some interpolated sample direction which is the re
ection of its induced light source direction. This can
occur if and only if the Gauss map of the sample directions intersects that of the re
ection directions Ri

(Figure 6-a). Otherwise, the maximum radiance arises at one of the Si. A simple conservative test for
non-intersection of two Gauss maps is that of strict linear separability; that is, two sets Ai and Bj of
vectors are strictly linearly separable i� there exists a vectorD such that D �Ai < 0 8i andD �Bj > 0 8j.
This 3D linear programming problem can be solved in time linear in the total number of vectors [19].

6 Radiance Interpolants

It remains to elucidate an interpolant mechanism that, given an isotopic region of rayspace, produces
for every query ray in the region radiance values within � of those that would be computed by classical
ray tracing. This section describes a mechanism by which all rays through some volume of space can be
represented, and by which a sample or \query" ray can be checked for inclusion in a represented set. We
wish to generate ray traced images using far fewer radiance samples than would classical ray tracing. To
do so, we lazily construct radiance interpolants in ray space, then judiciously substitute queries to such
interpolants for most (but not all) radiance sampling operations.

c

d

a

b

o o

(c,d)

(a,b)

Figure 7: A ray coordinatized by its 2D
intercepts with two reference planes.

o o
a

b d

c
(a0, b0, c0, d0)

(a0, b0, c0, d1)

(a0, b1, c0, d1)
(a1, b1, c1, d1)

(a0, b0, c1, d0)
(a1, b0, c1, d0)

(a0, b1, c0, d0)

a0

a1 c1
c0

 b1

 b0 d0

 d1

Figure 8: A ray subregion corresponds to a 4D hypercube {
the root of a linetree.

Given a pair of reference planes, those rays parallel to neither plane can be coordinatized by a pair
of 2D intercepts (e.g., (a,b) and (c,d) in Figure 7). Thus, the rays through a pair of bounded regions
(e.g., squares) on two reference planes form a four-dimensional set.

Given a ray described in 3D, the ray's 4D ray-space coordinates can be de�ned with reference to a
box around the object which ray intersects. Every such box has six \face-pairs" of opposing (parallel)
faces. To represent a ray, we select the face-pair that is maximally perpendicular to the ray; the two
faces involved must be expanded to capture all rays that could intersect the object.

All rays in a subregion of ray space can be generated by allowing (a; b; c; d) to take values in the domain
[a0::a1] � [b0::b1]� [c0::c1] � [d0::d1]. Conversely, one may determine whether a given ray (a; b; c; d) lies
inside a region in ray space by performing four interval tests, one for each of the ray coordinates a; b; c; d.
Using this geometric representation of rays, we associate radiometric information (i.e., radiance values)
in a data structure called a \linetree" (Figure 8 depicts the root cell of a linetree). When a radiance
query is made on a linetree cell whose sixteen extremal rays do not form an isotopy, the linetree is
adaptively subdivided.

7 Implementation

We modi�ed a classical Whitted ray-tracer to use lazy radiance interpolation. This section describes the
algorithm in detail. Given an eye ray and an object it intersects, we must determine whether interpolation
will fail or succeed for the ray. To do so, we �rst identify the face-pair and (a; b; c; d) intercepts for that
pair. We then �nd the leaf linetree containing (a; b; c; d) (cf. Figure 8). If the interpolation predicate
for that leaf is TRUE, interpolation is performed, producing a radiance value for the eye ray. Otherwise,
if the (leaf) linetree's depth does not exceed some maximum depth, it is subdivided. Construction of
an interpolant is then attempted for the (single) new child which contains the original eye ray. In this
fashion, interpolants are \lazily" constructed.

To build an interpolant for an object, 16 interpolant rays are cast. If all 16 hit the object, a shading
operation is invoked for each interpolant ray. If the shading calls produce isomorphic raytrees, and all
raytrees satisfy the blocker, specularity, and epsilon tests, the predicate associated with the linetree
cell is set to TRUE. In this case, subsequent radiance queries to this linetree cell will be successfully

interpolated. Otherwise, the predicate is set to FALSE; subsequent queries to this linetree cell will result
in subdivision as described above.

We employ a sphere illuminated by a single light source to illustrate the algorithm's operation.
Color Plate 1-(a) depicts how our algorithm isolates all possible sources of aliasing. The yellow and green
areas correspond to regions of subdivision due to non-isomorphic raytrees { due to silhouetting and self-
shadowing, respectively. The cyan region corresponds to subdivision around the specular highlight on
the sphere (i.e., failure of the specularity test). The purple region corresponds to subdivision due to the
relative error between the samples exceeding epsilon (i.e., failure of the epsilon test). Color Plate 1-(b)
shows the aliasing artifacts that can arise if specular highlights are not detected. The image was generated
by disabling the specularity test. This causes erroneous interpolation across the specular highlight. The
�nal result of our algorithm in the case of this simple scene is depicted in Color Plate 1-(c).

A multiple-object scene is required to illustrate failure of the blocker test. Color Plate 2-(a) depicts
a face model with 7 primitives, rendered with � = 0:5. Color Plate 2-(b) is color-coded as before. The
red regions in the scene correspond to regions of subdivision due to potential blockers.

8 Results

The ray tracer uses two primitive operations: Intersect, which computes the intersection of a ray with
the objects in the scene, and Shade, which computes the radiance at a point by local and global recursive
computations of the radiance.

TotI and TotS are the total number of intersection and shade operations. IpI and IpS are the
intersection and shade operations invoked by our scheme to build interpolants. BaseI and BaseS are
the intersection and shade operations invoked when interpolation fails. (For the classical ray tracer, IpI
and IpS are zero.)

8.1 Coherence

This section discusses the algorithm's performance on two models (depicted in Color Plate 2-(a) and
Color Plate 3-(a)). The face model comprises 7 primitives. The room model is more complex, with 18
primitives. All images were rendered using our radiance interpolant algorithm. We instrumented both
the initial and modi�ed ray tracer to record BaseI , BaseS , IpI , and IpS . For these runs, the ray tracer
recurses to a maximum depth of 4, and cuts o� recursion if the aggregate weight is less than 0.01.

Intersect Counts (x 1000) Shade Counts (x 1000)
Frame Ip Scheme Classical Inter. Ip Scheme Classical Shade Ip
Base Ip Tot Tot Ratio Base Ip Tot Tot Ratio Success

1 257 235 492 466 1.06 54 83 137 159 0.86 70%
2 266 64 330 486 0.63 56 23 79 166 0.47 71%
3 276 43 319 506 0.59 57 15 72 172 0.42 71%
4 273 48 321 502 0.60 57 17 74 171 0.44 71%
5 270 63 333 495 0.63 56 23 79 169 0.47 71%

Table 1: Face model: Counts in thousands, and ratios with � = 0:25.

Table 1 presents the results for the face image depicted in Color Plate 2, with � = 0:5. The second
to fourth columns present BaseI , IpI , and TotI (in thousands) of our scheme, and we present TotI of
classical ray tracing in the �fth column for comparison. The sixth column presents the ratio of intersect
calls made by the interpolant algorithm to those made by the unmodi�ed ray tracer. Similarly, the
seventh to ninth columns present BaseS , IpS , and TotS (in thousands) of our scheme, and we present

TotS of classical ray tracing in the tenth columns for comparison. The second to last column presents
the ratio of shade calls made by the two ray tracers. The last column presents the percentage of pixels
for which interpolation was successful.

The �rst row presents results for the initial rendering of the scene. The next 2 rows correspond to
small movements in the eye forward (along the viewing direction). The last 2 rows correspond to small
movements of the eye sideways. Similarly, Table 2 presents the results for the room model (Color Plate 3),
from which images were generated with � = 0:1.

The results demonstrate the algorithm's use of spatial and temporal coherence. The �rst time the
scene is traced, our algorithm populates the linetrees with interpolant samples by shooting interpolant
rays. The �rst row of Table 1 shows that the �rst time the scene is rendered our algorithm increases
the intersection operations by 6%, whereas shade operations decrease by 14% due to coherence of the
radiance �eld. Moving forward or sideways can cause unexplored parts of the scene to be exposed, and
interpolants have to be built for these exposed regions. Subsequent small, coherent movements of the
eye reduce the number of intersections and shades by up to 41% and 58%, respectively.

Intersect Counts (x 1000) Shade Counts (x 1000)
Frame Ip Scheme Classical Inter. Ip Scheme Classical Shade Ip
Base Ip Tot Tot Ratio Base Ip Tot Tot Ratio Success

1 166 304 470 384 1.31 24 78 102 91 1.13 76%
2 162 146 308 384 0.72 23 40 63 91 0.69 77%
3 161 106 267 383 0.58 22 29 51 90 0.56 78%
4 160 107 267 377 0.59 23 27 50 88 0.56 77%
5 159 114 273 370 0.62 23 29 52 87 0.60 76%

Table 2: Room model: Counts in thousands, and ratios with � = 0:25

The results in Table 2 correspond to the room model and they agree with those of the face model.
The �rst time the scene is rendered the number of intersect and shade operations increase by 31% and
13% respectively. However, subsequent movements of the eye decrease the number of intersects by up
to 42%, and the number of shades by up to 44%.

8.2 Error Bounds

We also varied � to observe its impact on image quality. Color Plate 3-(a) depicts an image generated
with � = 0:5. Some artifacts arise in the mirror and along the bottom of the mirror where interpolation
takes place across the edge of the wall. However, reducing � to 0.25 produces an image with no visible
artifacts (Color Plate 3-(b)).

Intersect Shade Ip
� Ratio Ratio Success

1.00 0.85 0.90 90%
0.50 1.12 0.96 78%
0.25 1.31 1.13 76%
0.00 3.46 2.89 0%

Table 3: Ratios as � is varied.

Table 3 summarizes the quantitative impact a range of � values have on the results. As � values
decrease, the number of intersect and shade operations increase, and the success rates drop. However,
we �nd that the change is not very dramatic, and good performance can be achieved in a scene with no
visible artifacts. It is also useful to note that decreasing � from 1.0 to 0.25 achieves good image quality
but does not substantially increase the work.

9 Conclusion

We described a novel scheme for lazy computation of information about radiance, organized by a per-
surface, hierarchical subdivision of linespace. We built a prototype implementation of this strategy,
and showed that it accelerates a classical ray-tracing computation by reducing the number of primitive
geometric and radiometric operations performed. Our scheme exploits screen-space, object-space, and
temporal coherence, and is the �rst to trade radiometric error bounds for the computation incurred in
ray tracing. The approach accelerates not only the generation of single images but also the generation
of images for a coherent sequence of viewpoints.

We intend to extend this approach in a number of ways. First, we will apply it to environments
that exhibit a full range of BRDFs, and greater geometric complexity. Second, the isotopy predicate
can be used to eliminate wasteful supersampling over homogenous screen-space regions. Finally, in an
interactive setting, we are investigating strategies for persistent storage of radiance values in portions
of the scene that have already been traversed, and for discarding such values when they have outlived
their usefulness.

10 Acknowledgments

We are grateful to Light Control, Inc. for funding this research. Michael Werman's helpful comments
and advice are gratefully acknowledged. We would also like to thank Andrew Myers for his useful
suggestions.

References

[1] Amanatides, J. Ray Tracing with Cones. In Computer Graphics (SIGGRAPH '84 Proceedings) (July
1984), H. Christiansen, Ed., vol. 18, pp. 129{135.

[2] Appel, A. Some Techniques for Shading Machine Renderings of Solids. In Proceedings of SJCC (1968),
Thompson Books, Washington, D.C., pp. 37{45.

[3] Arvo, J., and Kirk, D. B. Fast Ray Tracing by Ray Classi�cation. In Computer Graphics (SIGGRAPH
'87 Proceedings) (July 1987), M. C. Stone, Ed., vol. 21, pp. 55{64.

[4] Chen, S. E., Rushmeier, H., Miller, G., and Turner, D. A Progressive Multi-Pass Method for Global
Illumination. Computer Graphics (SIGGRAPH '91 Proceedings) 25, 4 (July 1991), 165{174.

[5] Cook, R. L., Porter, T., and Carpenter, L. Distributed Ray Tracing. In Computer Graphics (SIG-
GRAPH '84 Proceedings) (July 1984), vol. 18, pp. 137{45.

[6] Fujimoto, A., and Iwata, K. Accelerated Ray Tracing. Computer Graphics: Visual Technology and Art
(Proc. Computer Graphics Tokyo '85) (1985), 41{65.

[7] Glassner, A. Principles of Digital Image Synthesis. Morgan Kaufmann Publishers, Inc., San Francisco,
CA, 1995.

[8] Glassner, A. S. Space Subdivision for Fast Ray Tracing. IEEE Computer Graphics and Applications 4,
10 (1984), 15{22.

[9] Glassner, A. S. Spacetime Ray Tracing for Animation. IEEE Computer Graphics and Applications 8, 2
(Mar. 1988), 60{70.

[10] Glassner, A. S., Ed. An Introduction to Ray Tracing. Academic Press, 1989.

[11] Goral, C. M., Torrance, K. E., Greenberg, D. P., and Battaile, B. Modeling the Interaction of
Light Between Di�use Surfaces. Computer Graphics (Proc. Siggraph '84) 18, 3 (1984), 213{222.

[12] Haines, E., and Wallace, J. Shaft Culling for E�cient Ray-Traced Radiosity. In Proc. 2nd Eurographics
Workshop on Rendering (May 1991).

[13] Hanrahan, P., Salzman, D., and Aupperle, L. A Rapid Hierarchical Radiosity Algorithm. Computer
Graphics (Proc. Siggraph '91) 25, 4 (1991), 197{206.

[14] Heckbert, P. Writing a Ray Tracer. In Introduction to Ray Tracing, A. Glassner, Ed. Academic Press,
1989, pp. 263 { 294.

[15] Heckbert, P., and Hanrahan, P. Beam Tracing Polygonal Objects. Computer Graphics (Proc. Siggraph
'84) 18, 3 (1984), 119{127.

[16] Kajiya, J. T. The Rendering Equation. In Computer Graphics (SIGGRAPH '86 Proceedings) (Aug. 1986),
D. C. Evans and R. J. Athay, Eds., vol. 20, pp. 143{150.

[17] Kolb, C. RayShade Homepage http://www-graphics.stanford.edu/~cek/rayshade/.

[18] Lischinski, D., Smits, B., and Greenberg, D. P. Bounds and Error Estimates for Radiosity. In Pro-
ceedings of SIGGRAPH '94 (Orlando, Florida, July 24{29, 1994) (July 1994), A. Glassner, Ed., Computer
Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, ACM Press, pp. 67{74. ISBN 0-89791-
667-0.

[19] Megiddo, N. Linear-time algorithms for Linear Programming in R
3 and Related Problems. SIAM Journal

Computing 12 (1983), 759{776.

[20] Mitchell, D. P., and Hanrahan, P. Illumination From Curved Re
ectors. In Computer Graphics
(SIGGRAPH '92 Proceedings) (July 1992), E. E. Catmull, Ed., vol. 26, pp. 283{291.

[21] Nimeroff, J., Dorsey, J., and Rushmeier, H. A Framework for Global Illumination in Animated
Environments. In 6th Annual Eurographics Workshop on Rendering (June 12{14 1995), pp. 223{236.

[22] S�equin, C. H., and Smyrl, E. K. Parameterized Ray Tracing. In Computer Graphics (SIGGRAPH '89
Proceedings) (July 1989), J. Lane, Ed., vol. 23, pp. 307{314.

[23] Shinya, M., Takahashi, T., and Naito, S. Principles and Applications of Pencil Tracing. In Computer
Graphics (SIGGRAPH '87 Proceedings) (July 1987), M. C. Stone, Ed., vol. 21, pp. 45{54.

[24] Sillion, F., Arvo, J., Westin, S., and Greenberg, D. A Global Illumination Solution for General
Re
ectance Distributions. Computer Graphics (SIGGRAPH '91 Proceedings) 25, 4 (July 1991), 187{196.

[25] Sillion, F., and Puech, C. A General Two-Pass Method Integrating Specular and Di�use Re
ection.
Computer Graphics (SIGGRAPH '89 Proceedings) 23, 3 (July 1989), 335{344.

[26] Sillion, F., and Puech, C. Radiosity and Global Illumination. Morgan Kaufmann Publishers, Inc., San
Francisco, CA, 1994.

[27] Wallace, J., Cohen, M., and Greenberg, D. A Two-Pass Solution to the Rendering Equation: A
Synthesis of Ray Tracing and Radiosity Methods_Computer Graphics (SIGGRAPH '87 Proceedings) 21, 4
(July 1987), 311{320.

[28] Ward, G. J., Rubinstein, F. M., and Clear, R. D. A Ray Tracing Solution for Di�use Interre
ection.
In Computer Graphics (SIGGRAPH '88 Proceedings) (Aug. 1988), J. Dill, Ed., vol. 22, pp. 85{92.

[29] Whitted, T. An Improved Illumination Model for Shaded Display. CACM 23, 6 (1980), 343{349.

