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ABSTRACT

We present PERM, a learned parametric representation of 3D human hair de-
signed to facilitate various hair-related applications. Unlike previous work that
jointly models the global hair structure and local curl patterns, we propose to
disentangle them using a PCA-based strand representation in the frequency do-
main, thereby allowing more precise editing and output control. Specifically,
we leverage our strand representation to fit and decompose hair geometry tex-
tures into low- to high-frequency hair structures, termed guide textures and resid-
ual textures, respectively. These decomposed textures are later parameterized
with different generative models, emulating common stages in the hair groom-
ing process. We conduct extensive experiments to validate the architecture de-
sign of PERM, and finally deploy the trained model as a generic prior to solve
task-agnostic problems, further showcasing its flexibility and superiority in tasks
such as single-view hair reconstruction, hairstyle editing, and hair-conditioned
image generation. More details can be found on our project page: https:
//cs.yale.edu/homes/che/projects/perm/.

1 INTRODUCTION

3D hair modeling, as a crucial and expensive component in the realm of digital humans for industries
like gaming, animation, VFX, and virtual reality, combines the complex and artistic processes to
model the geometry of individual strands to create specific hairstyles in the 3D environment. With
the recent availability of high-quality 3D hair data (Hu et al., 2015; Shen et al., 2023; Zhou et al.,
2018), machine learning methods have emerged for automatic hairstyle synthesis (Zhou et al., 2023;
Sklyarova et al., 2023b), and 3D hair reconstruction from images (Wu et al., 2022; Zheng et al.,
2023; Takimoto et al., 2024; Kuang et al., 2022; Zhou et al., 2018) and monocular videos (Wu et al.,
2024; Luo et al., 2024; Sklyarova et al., 2023a).

Despite their achievements, these methods often overlook the inherent biscale nature of hair, where
the global structure defines the hair flow, volume and length and the local structure defines the
strand’s curl patterns. Neglecting these biscale variations not only limits the quality of hair gener-
ation and reconstruction (illustrated in the comparisons in Fig. 7 and Fig. 10), but also restricts the
editing capability on different scales. Moreover, most of the models proposed in existing methods
are heavy and task-specific, lacking the generalization capability to different down-stream tasks. In
contrast, the field of human body modeling has well-accepted lightweight parametric models like
SMPL (Loper et al., 2015) and MANO (Romero et al., 2017), which designed disentangled coef-
ficients for pose and shape and are widely applied as a generic prior in deep learning applications
such as human reconstruction and animation. To address this gap, we propose PERM, a paramet-

∗The work was mainly conducted at Adobe Research.
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ric representation of 3D human hair that is both lightweight and generic for various hair-related
applications.

Parameter Space of θ⃗ Parameter Space of β⃗

Guide Strands Full Hair Models Wisps

Figure 1: PERM is a learned parametric representation of 3D human hair that is designed with
disentangled parameters θ⃗ and β⃗ to respectively control the global hair structure (represented as
guide strands) and local curl patterns (represented as wisps).

PERM is novelly formulated as M(θ⃗, β⃗,R), where the output hair is conditioned on the guide
strand parameter θ⃗ for its global structure, the hair styling parameter β⃗ for its curl patterns, and
a pre-defined root set R for the hair density (as illustrated in Fig. 1). To independently control the
global structure and curl pattern, we propose a strand representation based on principal component
analysis (PCA) in the frequency domain, which naturally aligns with the cyclical nature of hair
growth (Hoover et al., 2023). We use around three millions of different strands to train the PCA
model and compare it with several deep neural network-based models. Despite the PCA model’s
simplicity, it demonstrates high effectiveness in forming a compact subspace for strands that pre-
serves geometry details much better than the deep neural network alternatives while demanding
much less computation and memory consumption.

Center Strand Our Guide Strand Center Strand Our Guide Strand

Figure 2: Guide strand of a wisp from PCA.

The learned principal components form an
interpretable space for hair decomposition,
where the initial components capture low-
frequency information, such as the rough di-
rection and length, while the subsequent com-
ponents encode high-frequency details like
curliness. As visualized in Fig. 2, this rep-
resentation allows for the intuitive extraction
of smooth guide strands from the given wisp,
closer to what artists really use when groom-
ing 3D hair in industrial software like Maya
XGen (Autodesk, 2024).

For parameterizing the full hair, we follow previous literature to compute the uv of the scalp, and
map the geometry features of each strand onto a 2D texture based on its root position on the scalp.
With the strand PCA representation, we can fit and store the dominant coefficients into guide textures
for guide strands and higher-order coefficients into residual textures for detailed strand patterns.
These decomposed textures are then used to train a framework composed of multiple generative
models as illustrated in Fig. 4.

After training PERM with 20k different hair styles, we obtain a compact, robust and editable gen-
erative hair model that can function as a generic hair prior for solving task-agnostic problems. We
demonstrate its capability across multiple applications, including single-view hair reconstruction
and hairstyle editing, such as changing a hairstyle from smooth to bouncy while maintaining a simi-
lar haircut. Despite not being trained specifically for any of these tasks, PERM achieves performance
equivalent or superior to state-of-the-art task-specific alternatives in our experiments. Moreover, we
introduce a novel application of using PERM-generated hair for conditional image generation and
editing hairstyles in the 3D latent space. A demo of these applications is provided in Fig. 3.
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“wavy and short hair, white sweater”

Input Image Single-view Recon. PERM Parameter Editing Hair-conditioned Image Generation

Figure 3: An application demo of PERM, where we first fit PERM parameters to reconstruct 3D hair
from the input image, then edit the parameters to change its style from straight to wavy, and finally
use the edited hairstyle and certain viewing direction as a condition for image generation with Adobe
Firefly (Adobe, 2024).

2 RELATED WORK

Due to the limited availability of 3D hair data, early hair modeling works (Wang et al., 2009) pri-
marily focused on generating variations from a single hairstyle using methods like PCA. With the
recent release of high-quality 3D hair datasets (Hu et al., 2015; Shen et al., 2023; Zhou et al., 2018),
machine learning methods have emerged to tackle various hair-related tasks. Hair representations
used in these methods are generally categorized into two types: volumetric hair representation and
strand-based hair representation.

Volumetric Hair Representation Considering the volumetric nature of hair, Saito et al. (2018)
first proposed a volumetric hair representation that converts a 3D hair into a combination of a 3D
occupancy field and an orientation field, where strands could later be generated from discretized
voxels. As an efficient spatially-aware intermediate representation for network training, this rep-
resentation has been widely adopted in subsequent works for a range of hair-related applications,
spanning from sketch-based hair modeling (Shen et al., 2020), video-based dynamic hair model-
ing (Yang et al., 2019; Wang et al., 2023b), to 3D hair reconstruction from images (Zhang & Zheng,
2019; Takimoto et al., 2024; Kuang et al., 2022) or monocular videos (Wu et al., 2024; Sklyarova
et al., 2023a). However, since discrete volumetric fields are not well-suited for representing curly
and kinky hair, another line of research has sought to improve this volumetric representation. These
advancements include implicit volumetric representations (Wu et al., 2022; Zheng et al., 2023) and
hybrid representations that attach multiple neural volumetric primitives to pre-obtained sparse guide
strands (Wang et al., 2022; 2023a).

Strand-based Hair Representation Since real human hair consists of individual strands, the most
intuitive way to represent it is as a collection of strands, where each strand can be represented as a 3D
polyline with a fixed number of points. Zhou et al. (2018) adopted this strand-based representation
and proposed to organize strand features as a 2D hair texture according to the scalp uv parameter-
ization, which facilitates the training of 2D convolutional networks. This idea has been expanded
by subsequent works, incorporating more advanced networks such as U-Net (Ronneberger et al.,
2015) and diffusion models (Ho et al., 2020) to solve tasks such as neural hair rendering (Rosu
et al., 2022), text-conditioned hair generation (Sklyarova et al., 2023b) and 3D hair capture from
monocular videos (Sklyarova et al., 2023a). While these diffusion-based methods produce impres-
sive results, they typically involve a heavy denoising process and lack a compact latent space for
hair reconstruction and editing. Recent work on 3D Gaussian Splatting (Kerbl et al., 2023) offers a
potential enhancement to this representation, where Gaussian splats can be attached to each segment
of the strand. This hybrid representation enables the joint learning of both hair geometry and ap-
pearance, showing promise in 3D hair capture (Zakharov et al., 2024; Luo et al., 2024; Zhou et al.,
2024). However, all these strand-based works are task-specific and neglect the biscale nature of hair,
thereby limiting the quality and versatility of the generated or reconstructed hairstyles.

Generative Hair Model GroomGen (Zhou et al., 2023), most related to our work, learns a hair
prior using hierarchical latent spaces. However, their hierarchy is only for the low-resolution hair
texture, which refers to a sparse set of strands, and the high-resolution hair texture, which refers
to the final full hair, is upsampled in a deterministic way. Although they denote the sparse strands
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as guide strands, those are just like the center strands as illustrated in Fig. 2 without the filtered
structure. They do not have the disentangled parameters for controlling the overall hair structure
features and the detailed hair curl patterns, which leads to a different architecture design from our
method.

While GroomGen reported promising results in their paper, we found it is both theoretically and
experimentally unreliable through our experiments. Its VAE-based strand representation struggles
to preserve the strand structure and the entire architecture is very unstable to train. We further
found that some curly hairstyles showcased in the paper are unachievable with the described strand
resolution. We include our experiments of GroomGen in Appendix C.4.

PCA for Hair The biology community has widely adopted PCA to analyze and classify different
hair types in the real world (Hoover et al., 2023; De La Mettrie et al., 2007; Loussouarn et al., 2007).
We transfer these biological insights into the machine learning domain, introducing the first neural
network architecture to incorporate a PCA-based strand representation for human hair. While Wang
et al. (2009) previously explored PCA-based representations for variations of a single hair model,
we aim at generating high variety of hairstyles trained on large-scale dataset. This approach has
proven to be both efficient and highly accurate in preserving strand details, which can be deployed
as a generic hair prior to solve task-agnostic problems.

3 MODEL FORMULATION

StyleGAN2 U-Net Super Resolution

256x256x10

256x256x54

Geometry Texture

Guide Strands
Guide Texture
Baldness Map

Concat.Residual Texture
Baldness Map

Encode Modulate

Bl
en

d

Upsampled Guide Texture

Reconstructed Residual Texture

256x256x64

32x32x10

Figure 4: Architecture overview.

In PERM, hair is represented as geometry textures T storing the strand PCA coefficients γ⃗ (Sec. 3.1).
These textures are decomposed into a lower-order component, the guide texture, which captures the
global hair structure, and a higher-order component, the residual texture, which encodes local curl
pattern information. To parameterize these textures, a parameter θ⃗ is designed to generate the guide
textures Tguide and Mguide through the function G(θ⃗), covering the sparse set of guide strands and the
hair growing area on the scalp respectively (Sec. 3.2.1). These guide textures are upsampled with
a deterministic function F(·), whose output contains the complete hair structure but lacks high-
frequency details (Sec. 3.2.2). To complement that, another parameter β⃗ is introduced to infer the
residual texture Tres through the function D(β⃗), storing high-frequency information such as different
curl patterns (Sec. 3.2.3). Concatenating the upsampled guide texture and residual texture yields the
geometry texture, which can then be sampled and decoded with the strand function S(γ⃗) formulated
in Sec. 3.1 to produce the final strand geometry. An overview of this architecture is illustrated in
Fig. 4, and the resulting PERM model, denoted as M(θ⃗, β⃗,R), can then be expressed as:

M(θ⃗, β⃗,R; Φ) = S
(

Sample
(
R;F(G(θ⃗))⊕D(β⃗)

))
, (1)

where Sample(·) denotes nearest neighbor interpolation used to sample the synthesized texture with
2D root coordinates in the pre-defined root set R, ⊕ represents the concatenation operation along the
feature channels, and Φ specifies the full set of trainable parameters in PERM used to approximate
the functions above. Once trained, parameters in Φ are held fixed, and novel 3D hairstyles are
synthesized by varying θ⃗ and β⃗ respectively, while the hair density can be adjusted by manipulating
the number of roots in R. The dimension of parameters θ⃗ and β⃗ are both set to 512 in our model
(|θ⃗| = |β⃗| = 512). In the following, we delve into the details of each term in our model.
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3.1 STRAND REPRESENTATION

For human hair, its cyclical growth behavior has been extensively documented in the biology com-
munity, where PCA has also been employed to analyze different hair types (Hoover et al., 2023;
De La Mettrie et al., 2007; Loussouarn et al., 2007). Inspired by these biological findings, we define
a low-dimensional parameter space based on PCA in the frequency domain. Formally, for 3D hair
strands with a fixed number of points S = {p1,p2, . . . ,pL} ∈ RL×3 (L = 100 in our experiments),
they are represented as the output of a linear function S(γ⃗) in the frequency domain:

S(γ⃗;X) = iDFT(S̄+ γ⃗⊤X) = iDFT(S̄+

|γ⃗|∑
n=1

γ⃗nXn), (2)

where γ⃗ = [γ1, . . . , γ|γ⃗|]
⊤ is a vector of strand coefficients, and X = [X1,X2, . . . ,X|γ⃗|]

⊤ ∈
R|γ⃗|×6k forms a matrix of orthonormal principal components that capture phase variations in
different strands, with k = ⌊L/2⌋ + 1 referring the number of frequency bands. The term
S̄ = [S̄real, S̄imag] ∈ Rk×3×2 represents the mean phase vector of strands, and iDFT(·) denotes
the inverse Discrete Fourier Transform that maps strands back from the frequency domain to the
spatial domain. In other sections, we often omit X in Eq. 2 for notational convenience.

To obtain quantities in Eq. 2, we first apply the Discrete Fourier Transform (DFT) along the x, y, z
axes to all strands in our collected hair models, and then compute the mean phase vector S̄ and solve
the principal components X by performing PCA on the computed Fourier bases, which is similar to
the prevalent PCA-based modeling methods in digital humans (Blanz & Vetter, 1999; Loper et al.,
2015; Li et al., 2017). We set the number of PCA coefficients |γ⃗| = 64, which explained almost
100% of the variance in the training set (see Fig. 12).

Our PCA-based representation also facilitates a meaningful decomposition of strand geometry by
forming an interpretable parameter space. Our analysis in Appendix B.4 reveals that the first 10 PCA
coefficients are enough to effectively capture the global structure of each strand, and the remaining
54 coefficients encode high-frequency details, such as curl patterns (see Fig. 19). Leveraging this
intuitive decomposition, we can effortlessly edit a given hairstyle or transfer the curl patterns from
one hairstyle to another. Examples are provided in Fig. 6.

3.2 FULL HAIR REPRESENTATION

We define a 2D parameterization of hairstyles on the scalp surface as a regular uv texture map, where
each texel stores the strand PCA coefficients γ⃗ formulated in Eq. 2. These textures are referred
to as hair geometry textures, denoted as T ∈ R256×256×64. Similar to GroomGen (Zhou et al.,
2023), we separately model the baldness area as a baldness map M ∈ R256×256. Both T and M
are downsampled to 32 × 32 to represent guide strands (denoted as the guide texture Tguide and
mask Mguide), where only the low-rank PCA coefficients (|γ⃗guide| = 10) are kept in Tguide. As
not all texels will be decoded to meaningful strands, Tguide typically accommodates around 400
strands, as visualized in Fig. 1. Note that the concept of guide strands here is different from previous
works (Zhou et al., 2023; Shen et al., 2023), where the guide strands are just quantitatively down-
sampled strands as visualized in Fig. 2 without the filtered structure.

Since guide strands only serve as a sparse representation of the full hair, an upsampling process is
necessary to obtain the final hair strands. However, as illustrated in GroomGen, this process en-
tails a one-to-many mapping (Zhou et al., 2023), wherein the same guide strands can be upsampled
to yield diverse hairstyles with varying strand randomness and curliness. Achieving this property
proves challenging, necessitating an orthogonal decomposition of the global hair structure and local
curl patterns. Previous methods thus either downgraded to a deterministic one-to-one mapping (Skl-
yarova et al., 2023b) or resorted to a manual post-processing step (Zhou et al., 2023). To address
this challenge, we further decompose our hair geometry texture T into Tlow ∈ R256×256×10 and
Tres ∈ R256×256×54 by splitting along the feature channels. Given the explainability of our strand
PCA coefficients, we discern that Tlow encapsulates the global hair structure, while Tres embodies
the local curl patterns, denoted as the residual texture.

Leveraging this decomposition, we employ different neural networks to parameterize them, simu-
lating the automated process of hair modeling pipeline.
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3.2.1 GUIDE TEXTURE SYNTHESIS

Formally, for guide textures, we train a neural network to approximate the function, G(θ⃗;ϕ1):
R|θ⃗| 7→ R32×32×(10+1), which synthesizes Tguide and Mguide from the guide strand parameter θ⃗,
where ϕ1 denotes the trainable network parameters. In our formulation, we choose StyleGAN2 (Kar-
ras et al., 2020) as the backbone of our model, which has been proved to be a powerful generator
in both 2D images and 3D feature tri-planes (Chan et al., 2022). It also ensures our guide strand
parameter will follow the normal distribution θ⃗ ∼ N (0, I), making it easy to sample. Moreover,
the intermediate W and W+ spaces introduced in StyleGAN allow for more faithful latent embed-
ding (Abdal et al., 2019), which in our case facilitates hair reconstruction either from 3D strands
or 2D orientation images. Since our generator synthesizes both the guide texture Tguide and mask
Mguide, we use a similar dual discrimination method as EG3D (Chan et al., 2022), where we con-
catenate these two images and feed them into the discriminator. This operation ensures consistency
between the generated texture and mask, which helps the generator to place zero-length strands in
bald areas. Our training objective is identical to StyleGAN2, which consists of a non-saturating
GAN loss (Goodfellow et al., 2014) with R1 regularization (Mescheder et al., 2018) on both the
texture and mask, where the regularization strengths are set to 5 and 1, respectively.

3.2.2 GUIDE TEXTURE UPSAMPLING

To upsample the synthesized guide textures, we formulate it as an image super resolution problem,
which can be defined as the function, F(Tguide,Mguide;ϕ2) : R32×32×11 7→ R256×256×10, with
trainable network parameters ϕ2. Note that this function operates as a deterministic mapping with-
out parameter control, which aligns with both previous deep learning-based methods (Zhou et al.,
2023; Sklyarova et al., 2023b) and the adaptive interpolation algorithm used in current hair model-
ing software. To approximate F(·), we train a U-Net (Ronneberger et al., 2015) on the bilinearly
upsampled textures, which translates them to 14-channel weight maps, where the first 4 channels
represent the weight vector ω⃗ for the 4 neighboring guide strands, and the last 10 channels represent
a residual vector δ⃗ to correct the blended coefficients. Therefore, the final coefficient γ⃗low can be
calculated as:

γ⃗low = ω⃗⊤γguide + δ⃗ =

4∑
n=1

ωnγ⃗
n
guide + δ⃗. (3)

Our experiments demonstrate that this weight-based blending output allows the network to converge
to a sharper result compared to predicting coefficients directly.

We train the U-Net in a supervised manner, where we employ both an L1 loss for the blended
texture T̂low and a geometric loss Lgeo for the decoded strand geometry. Specifically, the geometric
loss Lgeo encompasses an L1 loss for the point position p̂n, a cosine distance for the orientation
d̂n = p̂n+1 − p̂n (Rosu et al., 2022), and an L1 loss for the curvature, represented as the L2 norm
of binormal vector b̂n = ∥d̂n × d̂n+1∥2 (Sklyarova et al., 2023a):

Lgeo =
L∑

n=1

∥p̂n − pn∥1 + (1− d̂n · dn) + ∥b̂n − bn∥1. (4)

A regularization term is included as well to constrain the residual vector δ⃗ towards 0. The overall
loss function, denoted as Lsuperres, then can be expressed as:

Lsuperres = λtex∥T̂low −Tlow∥1 + λgeoLgeo + λreg∥δ⃗∥22, (5)

where the weighting factors λtex, λgeo and λreg are set to 1, 1 and 0.1, respectively.

3.2.3 RESIDUAL TEXTURE SYNTHESIS

To simulate the artistic process of creating different curl patterns, we train a neural network to ap-
proximate the function, D(β⃗;ϕ3) : R|β⃗| 7→ R256×256×54, where we learn to synthesize the residual
texture Tres from the hair styling parameter β⃗, and ϕ3 represents the trainable network parameters.

Although StyleGAN2 performs well in generating textures for guide strands, we found it struggles
with residual textures, as they contain more data than high-resolution RGB images. Therefore, we
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opted for VAE (Kingma & Welling, 2013) as the backbone, where the encoder adopts an architecture
similar to pSp (Richardson et al., 2021), and the decoder takes the same architecture as StyleGAN2
generator. Essentially, the encoder E projects the residual texture Tres and baldness map M into the
latent space, where the latent vectors will then be used to modulate the decoder to reconstruct the
input. A similar loss function as Eq. 5 is defined as the training objective for the VAE, which can be
expressed as:

Lres = λtex(∥T̂res −Tres∥1 + ∥M̂−M∥1) + λgeoLgeo + λKLLKL, (6)

where the reconstruction terms are computed on the residual texture, baldness map, and decoded
strand geometry. The weighting factors λtex, λgeo, and λKL are set to 10, 1, and 1e−4, respectively.

4 EXPERIMENTS

We train PERM on an augmented version of USC-HairSalon (Hu et al., 2015), which contains a total
of 21, 054 data samples. For evaluation, we compiled a separate dataset of 17 publicly available hair
models, comprising 151, 829 strands in total. Detailed data augmentation and source of our testing
data are provided in Appendix B.1. Since USC-HairSalon lacks sufficient curly hair data, we curated
a private dataset consisting of 80 manually groomed hairstyles, comprising a total of 4, 368, 679
strands with a greater diversity of style. We conducted experiments on this private dataset to further
validate the robustness of our representation, whose results are detailed in Appendix B.4.

4.1 STRAND REPRESENTATION

We first conducted extensive experiments to evaluate our PCA-based strand representation against
various alternative deep learning-based representations and a simpler PCA-based formulation with-
out DFT. Contrary to the common belief that neural network methods outperform linear models like
PCA, our experiments show that the PCA method performs better in the context of hair modeling.

To quantitatively assess their reconstruction capabilities, we present the mean position error (pos.
err.), computed as the average Euclidean distance between corresponding points on the reconstructed
strands and the ground truth. Additionally, we report the mean curvature error (cur. err.), defined
as the L1 norm between the curvatures of reconstructed and ground truth strands. Please refer to
Appendix B.3 for details of the metrics.

Table 1: Reconstruction errors reported on different strand representations. Here boldface corre-
sponds to the best result and underline means the second best.

Freq. VAE CNN VAE Transformer VAE MLP VAE PCA Freq. PCA (Ours)

# params. 15.67M 759.24K 2.29M 15.67M 19.31K 19.50K

pos. err. 1.211 0.446 0.288 0.158 0.019 0.020

cur. err. 0.910 6.250 8.539 1.594 2.361 2.150

Quantitative results are reported in Table 1, where the deep learning-based strand representations
include a VAE model trained with frequency features (Freq. VAE) (Zhou et al., 2023), and other
VAE variants with CNN, Transformer (Vaswani et al., 2017), and ModSIREN MLP (Mehta et al.,
2021) decoders. All configurations compress strands to 64-dimensional vectors. While simple, our
PCA-based representations demonstrate a remarkably small position error, achieving this with a sig-
nificantly reduced number of parameters compared to all different VAE variants. It also significantly
reduces training time and GPU memory consumption due to its analytical computation. Note that
position error is more dominant in determining the quality of reconstruction. Although some VAEs
may achieve a lower curvature error, their reconstructed strands often appear noticeably different
from the ground truth because they fail to preserve the overall shape (see Fig. 5). To further demon-
strate the robustness of our strand representation, we trained all models on the curlier private dataset
and evaluated them using the same 17 publicly available hairstyles. Detailed experimental results
can be found in Appendix B.4, which reveal a trend similar to those in Table 1 (our PCA-based
representation achieves the lowest position error and a comparatively low curvature error).
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Figure 5: Comparison of our PCA-based strand representation (Freq. PCA) with other VAE and
PCA-based representations. Reconstructed strands are color-coded by their position error.

Additionally, with our proposed PCA-based strand representation, we can smooth a given hairstyle
by truncating its strand PCA coefficients (Fig. 6a, b), or transfer hairstyle details by blending the
low-rank and high-rank portions of PCA coefficients from different hairstyles (Fig. 6c – f).

(a) Style A: 64 coeff. (b) Style A: 10 coeff. (c) Style B: 64 coeff. (d) B: 10 coeff. + A: 54 coeff. (e) Style C: 64 coeff. (f) C: 10 coeff.+ A: 54 coeff.

Figure 6: Examples of hairstyle editing with our PCA-based strand representation. (a) and (b)
demonstrate hair smoothing by truncating the strand PCA coefficient from 64 to 10. (c) – (f) show
the detail transfer between different hairstyles.

4.2 FULL HAIR REPRESENTATION

3D Hair Parameterization To evaluate our proposed hairstyle representation, we first fit PERM
parameters to target 3D hair models through differentiable optimization, which we term as 3D hair
parameterization. Technical details are provided in Appendix B.5. In Fig. 8 we present a subset of
fitted results that illustrate our model’s capability to accurately recover the given 3D hair models.
Even if the target hair has no guide strands, our model can generate reasonable guide strands to
depict their overall shapes, obtaining directly from S

(
G(θ⃗∗)

)
.

GroomGen (Zhou et al., 2023) Ours

Figure 7: Comparison with our implementation of GroomGen (Zhou
et al., 2023) on random hairstyle synthesis. Full results are available
in Fig. 27.

Comparison with Groom-
Gen The most relevant
previous work is Groom-
Gen (Zhou et al., 2023)
that learns hierarchical rep-
resentations of 3D hair. As
there is no publicly avail-
able GroomGen code, we
implemented and trained
it on the same augmented
USC-HairSalon dataset.
We also contacted the
authors to obtain part of
their official checkpoints to
verify the correctness of our implementation. Detailed verification can be found in Appendix C.4,
where we compared each network module with the available official checkpoints to demonstrate
the correctness of our implementation. Through experiments with our implementation, we found
the neural upsampler module in GroomGen, which is a GAN architecture, is very unstable to train,
frequently leading to collapsed results. In Fig. 7 we visualize randomly synthesized hairstyles
by sampling our parameter space and GroomGen’s latent space with the same Gaussian noise,
demonstrating their collapsed output with weird shapes and curls. We further conducted a quan-
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titative evaluation of reconstruction errors on the 17 testing hairstyles, where our model achieves
a position error of 1.658 and curvature error of 0.769, both of which are lower than GroomGen’s
corresponding values (position error 2.570, curvature error 6.199). During quantitative evaluation,
we also found that 100 points per strand are insufficient to faithfully represent long kinky hairstyles.
Examples are provided in Fig. 25.

Figure 8: A subset of 3D hair models fitted by PERM.

5 APPLICATIONS

M(θ⃗, β⃗,R) T
(
M(θ⃗, β⃗,R)

)
Hair Mask Mrender

Strand Map Orender GT Strand Map Ogt Input Image

Figure 9: Illustration of our differentiable
rendering pipeline for single-view hair re-
construction.

Single-view Hair Reconstruction With 2D ob-
servations as input, we can reconstruct 3D hair by
optimizing PERM parameters to minimize the en-
ergy of generated hair when projected to the 2D
images. To fit 3D hair to 2D supervisions, we
design a differentiable rendering pipeline, as illus-
trated in Fig. 9. In the pipeline, we pre-compute
the transformation between our in-house head mesh
and SMPL-X (Pavlakos et al., 2019), denoted as the
function T , thus placing strand polylines generated
from PERM onto SMPL-X. We then attach a cylin-
der mesh onto each strand segment, as well as com-
puting the 3D orientation of each vertex as the per-
vertex feature. These features are projected and ren-
dered using Nvdiffrast (Laine et al., 2020) with the
estimated camera parameters, thereby obtaining the
rendered hair mask Mrender and strand map Orender.
By computing the pixel-wise mask loss and strand
map loss similar to HairStep (Zheng et al., 2023), gradients are back-propagated to optimize θ⃗ and
β⃗ with decoupled weight decay regularization (Loshchilov & Hutter, 2017). A penetration loss is
applied as well to penalize hair intersecting the body geometry.

In Fig. 10 and Fig. 30, we qualitatively compare our single-view reconstruction results with
HairStep (Zheng et al., 2023), the state-of-the-art open-source method for single-view hair recon-
struction. With PERM as a robust prior to ensure the generation quality, our method not only excels
at reconstructing the global structure of the reference hairstyle but also better preserves local curl
patterns compared to HairStep. With the introduction of penetration loss, our algorithm effectively
handles input images with large and tilted head poses, avoiding outputs with unintended bald areas,

9
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an artifact we occasionally observed in HairStep. In Fig. 31 we show the single-view reconstruction
results of HAAR (Sklyarova et al., 2023b), a recent text-conditioned hair generation method. How-
ever, since textual descriptions cannot capture the intricate details of a hairstyle, its output can only
produce a rough approximation.

PERM Parameter Editing As we introduce separate parameters to control the global hair shape
and local strand details, we can edit the hairstyle with varying granularity by either swapping the
parameters from different hairstyles or interpolating the corresponding parameters. In the last row of
Fig. 30, we edit our reconstructed hairstyles by swapping their β⃗ parameters from a wavy reference
hairstyle, thereby altering their curl patterns while maintaining a similar haircut. More examples of
hairstyle interpolation are provided in Appendix D.2, with comparisons to (Weng et al., 2013) and
(Zhou et al., 2018).

Hair-conditioned Image Generation Latest text-to-image (T2I) models (e.g., Adobe Fire-
fly (Adobe, 2024)) can generate high-quality portrait images. However, the text embedding of simple
prompts like “wavy and short hair” is not precise enough to represent a specific hairstyle. To tackle
this issue, we show the use of PERM in facilitating conditional image generation. Specifically, We
could use PERM to sample and edit hairstyles in 3D, or reconstruct 3D hairstyles from images, and
then feed the depth and edge information extracted from the hair geometry to the T2I models to
generate the final images. As shown in Fig. 32, pure text prompts often lead to images with different
hairstyles, while combined with the input hair reference, the generated images show a much more
consistent hairstyle. More examples are available in Fig. 33.
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Figure 10: Single-view hair reconstruction on images with curly hair and tilted head poses, with
comparison to HairStep (Zheng et al., 2023). More examples are available in Fig. 30.

6 CONCLUSION

We present PERM, a parametric hair representation supporting independent control over the global
hair structure and local curl patterns. While our approach demonstrates strong performance when
trained on 3D hair models, exploring methods to develop a 3D generative model for hair from 2D
in-the-wild images remains a compelling direction for future research. Besides, since our uv-based
hair representation is compatible with the existing diffusion pipeline, with more data available, it
would be interesting to train a 3D diffusion model for full-head synthesis with controllable hair
modeling. Last but not least, aligning with trends in other 2D or 3D generative tasks, controllable
3D hair synthesis with multi-modal input signals presents another exciting avenue for future work
in this domain.
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A FORMULATION DETAILS

A.1 HAIR GEOMETRY TEXTURES

Unlike triangle meshes that share the same topology between different bodies and faces, hair tends
to have a different number of strands for different hairstyles, making traditional PCA-based blend
shapes impossible on these data. Although we can force different hairstyles to have the same number
of strands by introducing a resampling step, the computed blend shapes would still have a fixed
number of strands, which are less flexible in real applications. For flexibility, we store each hair
model as a 2D texture map of strand PCA coefficients. With the scalp parameterization proposed
by Wang et al. (2009), we are able to unwarp the 3D scalp surface to a 2D uv plane. However,
naively storing strand PCA coefficients on the projected 2D root positions will cause two problems:
(1) different strands may be projected to the same texel due to discreterization, thus causing collision
problems; (2) some texels may receive no strands, thus leaving missing values in the projected
textures.

To address these issues, we fit our geometry textures with two steps: first, we find the nearest 2D
hair root for each texel, and store the corresponding strand PCA coefficients at that texel. For those
texels whose distance to its nearest hair root is above a threshold ϵ = 0.01, we store a special vector
that will be decoded to strands with zero length, and mark those texels as a baldness map M (Zhou
et al., 2023). This step ensures no missing values in the texture, which we denote as the initialized
geometry texture Tinit. Both M and Tinit have the resolution 256 × 256, which is empirically set
considering the trade-off between size and expressiveness. To ensure that geometry textures can
properly recover the original 3D hairstyle, we optimize them directly in the second step:

T∗ := argmin
T

Lgeo

(
S
(
Sample(R;T)

))
, (7)

where we use loss Lgeo to measure the reconstruction difference on strand geometry.

GT (10k strands) 10k samples 100k samples

Figure 11: Illustration of fitted hair geometry textures and the
corresponding 3D hairstyle. Here baldness maps are visualized
as the alpha channel in the RGBA textures.

We employ the Adam opti-
mizer (Kingma & Ba, 2014)
with a learning rate of 0.001.
With Tinit as initialization,
our experiments show that the
optimization process converges
within 500 iterations, and in
Fig. 11 we show an example
of the original hairstyle, the
fitted geometry texture, and
the recovered 3D hairstyles by
sampling and decoding from the
texture with different numbers
of roots. These fitted geometry
textures finally form a unified
representation across different
hairstyles, which have the same
size 256 × 256 × 64 and allow
for arbitrary sampling.

A.2 NETWORK ARCHITECTURE

StyleGAN2 Backbone Our StyleGAN2 backbone follows the official implementation of (Karras
et al., 2020)1, with a mapping network of 4 hidden layers. We modify the output convolutions such
that they produce a feature image of shape 32 × 32 × 10. Subsequently, a small MLP decoder is
employed to map the output features to 10-dimensional strand PCA coefficients and a single scalar
for guide mask. The MLP decoder consists of a single hidden layer of 64 hidden units and uses the
softplus activation function. Note that we do not utilize pre-trained StyleGAN2 checkpoints for our
task, the entire module is trained from scratch.

1https://github.com/NVlabs/stylegan2-ada-pytorch
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U-Net Super Resolution Our U-Net module is implemented based on an unofficial online imple-
mentation2, which translates the bilinearly upsampled textures of shape 256 × 256 × 11 to weight
maps of shape 256 × 256 × 14. The convolution layers progressively downsample the input to a
shape of 16× 16× 512, which is followed by 4 bilinear upsampling and double convolution layers
with skip connections to produce the weight map.

VAE In our VAE module, the encoder adopts a similar architecture to pSp (Richardson et al.,
2021), which contains 4 IR-SE blocks (Hu et al., 2018) to extract a feature image of shape 4×4×512.
This feature image is then flattened and processed through a fully-connected layer to derive the mean
and variance of β⃗ of 512 dimensions. The decoder mirrors the StyleGAN2 generator but omits its
mapping network. Its output size is modified to 256×256×54, followed by the same MLP decoder
that maps the output features to 54-dimensional strand PCA coefficients and a single scalar for
baldness map.

B EXPERIMENT DETAILS

B.1 DATASETS

We train PERM on USC-HairSalon (Hu et al., 2015), which is a dataset comprising 343 3D hair
models collected from online game communities. To increase diversity, we employ the data aug-
mentation method proposed in HairNet (Zhou et al., 2018), where different hair models within the
same style class are blended to produce novel hairstyles. The blended hairstyles are further aug-
mented by horizontal flipping, resulting in a total of 21, 054 data samples used for training.

To assess the performance of our model, we compiled a dataset of 3D hair models from various
publicly available resources, including CT2Hair (Shen et al., 2023) (10 hairstyles), StructureAware-
Hair (Luo et al., 2013) (3 hairstyles), and Cem Yuksel’s website3 (4 hairstyles). We preprocess these
data to have the same number of points (L = 100) on each strand, and register them onto the same
head mesh.

B.2 TRAINING DETAILS

We train our model and conduct all experiments on a desktop machine with an Intel® Core™ i9-
10850K CPU @ 3.60GHz, 64GB memory, and an NVIDIA RTX 3090 GPU. Our code is imple-
mented with Python 3.9.18, PyTorch 1.11.0, and CUDA Toolkit 11.3.

In our model, each network module is trained separately using the Adam optimizer (Kingma & Ba,
2014). The StyleGAN2 backbone has a learning rate of 0.002 for its generator and 0.001 for its
discriminator, leading to a stable training configuration in our case. The StyleGAN2 backbone is
trained for 3, 000K images with a batch size of 4, which takes around 1 day on our machine. For
both the U-Net and VAE, we set their learning rates to 0.002 and train them for 2, 000K images with
a batch size of 4, each taking around 1 day on our machine.

B.3 QUANTITATIVE METRICS

To quantitatively measure the reconstruction capability of our model, we first report the mean posi-
tion error (pos. err.), which is essentially the average Euclidean distance between the corresponding
points on the reconstructed strands and the ground truth. We further report the mean curvature error
(cur. err.) that measures the L1 norm between the curvatures of reconstructed and ground truth
strands, where the curvature is defined as the reciprocal of the circumradius of 3 consecutive points
pi−1, pi, and pi+1 on the strand, which can be computed as:

cur(pi) =
2∥(pi−1 − pi+1)× (pi − pi+1)∥

∥pi−1 − pi+1∥ · ∥pi − pi+1∥ · ∥pi−1 − pi∥
. (8)

2https://github.com/milesial/Pytorch-UNet
3http://www.cemyuksel.com/research/hairmodels/
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B.4 PCA-BASED STRAND REPRESENTATION

In Fig. 12, we illustrate the explained cumulative relative variance against the number of principal
components. Although 20 PCA coefficients appear to capture nearly 100% of the variance in the
training set, increasing the number of coefficients improves the generalizability of our representa-
tion to unseen data, as evidenced by the reconstruction errors shown in Fig. 13 and Fig. 14 on the
testing set with 17 public hairstyles. We suspect that though high-frequency features are sparse and
contribute little to the variance, they are important to generalize fitted PCs to unseen curlier data.
Considering this issue, we opt for 64 principal components, a choice consistent with most previous
work on strand representation (Rosu et al., 2022; Sklyarova et al., 2023a; Zhou et al., 2023), while
achieving significantly lower reconstruction errors.
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Figure 12: Cumulative relative
variance.
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Figure 13: Position error.
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Figure 14: Curvature error.

To better elaborate the difference between PCA and Freq. PCA, we visualize the reconstructed
hairstyles of these two representations in Fig. 15, where strands are color-coded by their curvature
error. The average curvature errors for the entire hairstyle of these two representations are 2.671 and
2.341, respectively. These results demonstrate the clear advantage of our Freq. PCA representation
in preserving strand curvature, both qualitatively and quantitatively.
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Figure 15: Comparison of PCA and Freq. PCA-based strand representation. Reconstructed strands
are color-coded by their curvature error.

To further demonstrate the robustness of our strand representation, we trained all models on a dataset
of 80 manually groomed hairstyles, with curliness types varying from I to VI as defined in (Lous-
souarn et al., 2007), comprising a total of 4, 368, 679 strands. The newly trained models are then
tested on the same 17 publicly available hairstyles, with reconstruction errors reported in Table 2.
Even on this distinct dataset, our strand representation consistently achieves a significantly lower
position error compared to other deep learning-based representations.

Similarly, we plot the cumulative relative variance, reconstructed position error and curvature error
as a function of the number of principal components in Fig. 16, Fig. 17, and Fig. 18. The overall
trends in these figures closely align with the results we observed in our previous experiments.

In Fig. 19 we compare the reconstruction of the same hairstyle using different numbers of strand
PCA coefficients. 64 coefficients per strand are sufficient to closely replicate the original hair, and
its curl patterns are captured down to 15 coefficients per strand. While smooth, 5 coefficients per
strand fail to represent the global hair structure, whereas 10 coefficients per strand provide the most
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Table 2: Reconstruction errors reported on strand representations trained on a different strand
dataset. Here boldface corresponds to the best result and underline means the second best.

Freq. VAE CNN VAE Transformer VAE MLP VAE PCA Freq. PCA (Ours)

# params. 15.67M 759.24K 2.29M 15.67M 19.31K 19.50K

pos. err. 1.450 0.142 0.294 0.117 0.026 0.026

cur. err. 1.409 4.125 10.331 2.120 2.490 2.364
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Figure 16: Cumulative relative
variance.
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Figure 17: Position error.
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Figure 18: Curvature error.

balanced output in terms of smoothness and global structure preservation. Based on this observa-
tion, we choose to use 10 coefficients to capture the global structure of each strand, leaving high-
frequency details to the remaining 54 coefficients.

5 coeff. 10 coeff. 15 coeff. 30 coeff. 64 coeff. Ground Truth

Figure 19: Comparison of the same hairstyle reconstructed with different numbers of strand PCA
coefficients.

B.5 3D HAIR PARAMETERIZATION

To fit PERM parameters to target 3D hair models, we formulate it as an optimization problem, where
the objective is defined as:

θ⃗∗, β⃗∗ := argmin
θ⃗,β⃗

∥F(G(θ⃗))⊕D(β⃗)−T∥1 + Lgeo. (9)

We employ the Adam optimizer (Kingma & Ba, 2014) with an initial learning rate of 0.1 and a
cosine annealing schedule for the learning rate. For better convergence, we first optimize θ⃗ only
for 1, 000 iterations as a warm-up to match the global shape, and then jointly optimize θ⃗ and β⃗ for
4, 000 iterations.

With PERM, we fit parameters to hundreds of publicly available 3D hair models sourced from the
Internet. Similar to AMASS (Mahmood et al., 2019), we curated a dataset of 3D hair in a unified
and parametric manner, which we released as well to facilitate future research.

B.6 BASELINES

GroomGen (Zhou et al., 2023) As the authors of GroomGen have not publicly release their code,
we implement it ourselves with Python 3.9.18 and Pytorch 1.11.0. The model is then trained on the
same USC-HairSalon dataset as described in Appendix. B.1. Our implementation is further verified
with part of the official checkpoints we obtained from the authors.
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HairStep (Zheng et al., 2023) We use the pre-trained HairStep model released by the authors4.

Strand VAEs The architecture of different strand VAEs compared in Table 1 is adapted from
GroomGen (Zhou et al., 2023), where we only modify the decoder architectures to adopt CNN,
Transformer (Vaswani et al., 2017), and ModSIREN (Mehta et al., 2021).

C ABLATION STUDY

C.1 GUIDE TEXTURE SYNTHESIS

Table 3: Reconstruction errors re-
ported on different architectures for
guide textures.

Guide Textures
PCA StyleGAN2 (Ours)

pos. err. 1.163 0.611

cur. err. 2.939 1.582

To assess the performance of StyleGAN2 in guide texture
synthesis, we first create a PCA-based representation for
guide textures with a similar formulation as our strand rep-
resentation, and set the subspace dimension to 512 to align
with PERM’s setup. We then embed guide textures from
the testing set into these latent spaces, followed by a decod-
ing step to reconstruct them. Strands are further decoded
from the reconstructed textures to evaluate quantitative er-
rors, which are reported in Table 3. It is evident that results
from StyleGAN2 exhibit both smaller position and curva-
ture errors, indicating that StyleGAN2 learns a more ex-
pressive latent space than PCA. Fig. 20 displays examples of reconstructed guide strands, illustrating
that StyleGAN2 more faithfully preserves the structure of the ground truth.

PCA StyleGAN2 (Ours) Ground Truth PCA StyleGAN2 (Ours) Ground Truth

Figure 20: Comparison of PCA and StyleGAN2 in reconstructing given guide strands.

Reasons for the failure of PCA are straightforward: USC-HairSalon contains a vast number of
strands, specifically 3, 150, 559, for us to learn the PCA subspace, with a compression rate of ap-
proximately 78.7%. However, for guide textures, we can only create 21, 054 samples after data
augmentation, which is merely around 0.6% of the total number of available strands. Moreover, the
compression rate increases to 95%. These two factors lead to the poor performance of PCA in this
case.

C.2 GUIDE TEXTURE UPSAMPLING

In Fig. 21 we compare the strands decoded from textures upsampled with different interpolation
methods. Nearest neighbor interpolation (2nd column) produces aliased strands as it involves simple
repetition. Bilinear interpolation (3rd column) leads to smoother strands, but introduces unwanted
flyaway fibers, particularly in the forehead area. Our method (5th column) achieves the most natural
result, which resembles the shape of guide strands and forms reasonable hair partitions. In addition,
we employ the same U-Net architecture but configure it to directly predict strand PCA coefficients
rather than the blending weights. The output (4th column) contains more flyaway strands and a
reduced fidelity in capturing the overall hair shape, particularly noticeable in the lower part of the
hair.

4https://github.com/GAP-LAB-CUHK-SZ/HairStep
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Guide Strands Nearest Bilinear U-Net (coeff.) Ours Ground Truth

Figure 21: Comparison of strands upsampled with different interpolation methods.

C.3 RESIDUAL TEXTURE SYNTHESIS

In Fig. 22 we evaluate various network architectures for residual texture synthesis. When residual
textures are omitted, the resulting hairstyle captures only the global structure of the ground truth,
lacking all high-frequency details such as different curl patterns (1st column). Though StyleGAN2
performed well in synthesizing guide strands, we found it collapsed to produce blurry residual tex-
tures when embedding them into the latent space, as shown in Fig. 22 (2nd column). We conjecture
that this issue may be attributed to the large size of residual textures (256×256×54), as they contain
more data than high-resolution RGB images (1024 × 1024 × 3). Moreover, our dataset is smaller
than those image datasets used for StyleGAN training (e.g., FFHQ (Karras et al., 2019), which con-
tains 70K high-quality portrait images), thus further suppressing the expressiveness of StyleGAN2.
Considering these constraints, we devised our network architecture as a VAE, trading some sam-
pling diversity for higher reconstruction fidelity, which reconstructs sharper residual textures (3rd
column).

No Res. Tex. StyleGAN2 VAE (Ours) Ground Truth

Figure 22: Residual texture reconstruction with different network architectures. Insets show the
visualization of the corresponding residual texture. Please zoom in for details.

C.4 ANALYSIS OF GROOMGEN

Since GroomGen (Zhou et al., 2023) is not fully open-sourced, we first verify the correctness of our
implementation by comparing it to the official checkpoints of the strand VAE and hairstyle VAE,
which we obtained from the authors.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Official Strand VAE Our Implementation Ground Truth

Figure 23: Comparison of our strand VAE implementation
with the official checkpoint of GroomGen (Zhou et al., 2023).

For the strand VAE, we conducted
the same strand reconstruction ex-
periments as described in Sec. 4.1
and visualize the reconstructed re-
sults in Fig. 23, where both our im-
plementation and the official ver-
sion struggle to preserve the over-
all structure of the given hairstyle.
From a quantitative perspective,
our implementation even outper-
formed the official model, achiev-
ing lower position and curvature er-
rors on the test data. Specifically,
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the official checkpoint yielded a position error of 1.521 and a curvature error of 1.337, whereas our
implementation achieved 1.211 and 0.910, respectively.

For the hairstyle VAE, we were unable to embed guide strands from our head mesh into Groom-
Gen’s latent space due to the lack of uv parameterization of the head mesh they used. Instead, we
randomly sampled the latent spaces of both our implementation and the official version, using the
same Gaussian noise, and visualized the decoded guide strands in Fig. 24. As expected, our im-
plementation generates natural-looking guide strands, though they are sometimes overly smooth. In
contrast, the official hairstyle VAE produces curlier guide strands, but sometimes, the results appear
less natural. We hypothesize that these differences arise from the difference of the training data.

Official Hairstyle VAE Our Implementation

Figure 24: Comparison of our hairstyle VAE implementation with the official checkpoint of Groom-
Gen (Zhou et al., 2023). Our implementation and the official version are sampled using the same
Gaussian noise.

For the neural upsampler, as the authors cannot share their checkpoint, we can only use our own
implementation as reference. However, as a GAN, we found this module very unstable to train,
easily collapsing to weird outputs (see Fig. 7 and Fig. 27).

Original Kinky Hair Downsampled Hair Reconstructed Hair
200 points / strand 100 points / strand 100 points / strand

Figure 25: Verification of our GroomGen implementation on a manually made kinky hairstyle.

To assess whether our implementation of GroomGen can reproduce long kinky hairstyles, we man-
ually created a test hairstyle (Fig. 25 1st column) which originally contains 200 points per strand
to accurately capture the fine curls. We downsampled the strands to 100 points to fit our design,
which led to a noticeable degradation in curl fidelity (Fig. 25 2nd column). We then searched for
the optimal latent code to reconstruct the downsampled hair, yielding the results shown in the last
column of Fig. 25. Despite these efforts, our implementation struggled to faithfully reconstruct the
hairstyle with accurate fine details.

D ADDITIONAL RESULTS

D.1 RANDOM HAIRSTYLE SYNTHESIS

In Fig. 26, we showcase several random guide strands generated by sampling the parameter space
of θ⃗ with Gaussian noise, highlighting that the results from StyleGAN2 exhibit greater diversity
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compared to those generated by the PCA alternative discussed in our main paper. Given that PCA
lacks constraints on the distribution of its subspace, obtaining reasonable guide strands by sampling
its subspace with Gaussian noise is challenging, and our results indicate that most of them are
collapsed into similar outputs.

PC
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yl
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N
2

Figure 26: Guide strands synthesized from different Gaussian noise (Top: PCA; Bottom: Style-
GAN2). Note that PCA samples are collapsed to similar results due to the distribution difference
between Gaussian and PCA subspace.

In Fig. 27, we illustrate several random full hair models generated by sampling the parameter spaces
of θ⃗ and β⃗ with Gaussian noise, and compare these results to GroomGen (Zhou et al., 2023). Note
that we sample our parameter space and GroomGen’s latent space with the same Gaussian noise for
a fair comparison. From our observation, GroomGen tends to generate hairstyles with implausible
curls and flyaway strands, which do not appear in our results.

D.2 HAIRSTYLE INTERPOLATION

In Fig. 28 we show hairstyle interpolation with different granularity. In the top row, we linearly
interpolate the guide strand parameter θ⃗, resulting in hairstyles with different global structures. Since
the hair styling parameter β⃗ is kept fixed, local curl patterns, such as curls at the tips of strands,
remain consistent. In the middle row, we fix the parameter θ⃗ and linearly interpolate the parameter
β⃗, thereby generating novel hairstyles ranging from straight to curly while maintaining a nearly
identical haircut. In the bottom row, we jointly interpolate θ⃗ and β⃗, demonstrating the transition
from a short wavy hairstyle to a long straight hairstyle.

Additionally, we compare our method with (Weng et al., 2013) and (Zhou et al., 2018) on hairstyle
interpolation. Since neither (Weng et al., 2013) nor (Zhou et al., 2018) are publicly available, we
embed the 2 hairstyles selected by (Zhou et al., 2018) into our parameter space and jointly inter-
polate the projected θ⃗ and β⃗ to obtain our results. Qualitative comparisons are provided in Fig. 29,
demonstrating that our method achieves performance comparable to (Zhou et al., 2018), with both
outperforming the results from (Weng et al., 2013). Note that in the middle column of interpola-
tion, our method generates strands naturally covering the forehead, rather than severely intersecting
with the head mesh like (Weng et al., 2013). Our starting and ending hairstyles are a bit different
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Figure 27: Full hair models synthesized from different Gaussian noise, with comparison to our
implementation of GroomGen (Zhou et al., 2023) trained on the same dataset. Our model and
GroomGen are sampled using the same Gaussian noise. Hair colors are manually assigned for
aesthetic purposes.
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Figure 28: Hairstyle interpolation with different granularity. Top: interpolate θ⃗ only and keep β⃗

fixed; Middle: interpolate β⃗ only and keep θ⃗ fixed; Bottom: jointly interpolate θ⃗ and β⃗.

from others, which is the result of our parameterization process, as some details cannot be fully
reconstructed.

D.3 SINGLE-VIEW HAIR RECONSTRUCTION

To test reconstruction for hair under dynamics, we run our algorithm on image sequences sam-
pled from a video in (Yang et al., 2019), and compare our results to both (Yang et al., 2019) and
HairStep (Zheng et al., 2023) in Fig. 30. Since Yang et al. (2019) have not released the training data
or pre-trained model of their method, we can only use their provided videos for comparison.

Among these methods, our method achieves the best reconstruction quality regarding both the global
hair structure and local curl patterns, while also avoiding artifacts such as bald areas observed in
HairStep. Despite being trained solely on static data, our model demonstrates the ability to gener-
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Figure 29: Interpolation comparison with (Weng et al., 2013) and (Zhou et al., 2018).
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Figure 30: Single-view hair reconstruction and editing on image sequences, with comparison
to (Yang et al., 2019) and HairStep (Zheng et al., 2023).

alize and capture the dynamic effects of hair in the images. We conjecture that it is because our
disentangled guide strand parameters are flexible enough to capture large hair deformation varia-
tions. Additionally, since our reconstructed hairstyles are represented as parameters, we can substi-
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tute their β⃗ parameters with that of a wavy hairstyle (shown as reference in the last row), thereby
transferring the wavy patterns to the reconstructed results while preserving their overall structure.

Input Image HAAR (Sklyarova et al., 2023b)

Figure 31: Single-view hair reconstruction of
HAAR (Sklyarova et al., 2023b).

Another recent work, HAAR (Sklyarova et al.,
2023b), also demonstrates the capability to gen-
erate 3D hairstyles from input images. As a
text-conditioned diffusion model, their pipeline
involves first extracting hairstyle descriptions
from the input image using LLaVA (Liu et al.,
2024), then generates a strand-based hairstyle
based on these descriptions. However, since
textual descriptions cannot capture all the in-
tricate details of a hairstyle, HAAR often fails
to accurately reproduce the hairstyle from the
input image, resulting in only a rough resem-
blance (see Fig. 31).

D.4 HAIR-CONDITIONED IMAGE GENERATION

In Fig. 32 we present a comparison of image generation results with and without our input hair
conditions. Note that we use the pre-visualization from MeshLab (Cignoni et al., 2008) as the struc-
tural image condition, which we found to perform better than the final renderings. Without our hair
conditions, images generated with rough text prompts like “wavy and short hair” cannot guarantee
the production of the desired hairstyle, and their hairstyles often vary with pose, resulting in a loss
of multi-view consistency. Leveraging the rich information encoded in the 3D hair geometry, our
hair conditions effectively address these issues, producing high-quality portrait images with more
consistent hairstyles.

“wavy and short hair, white sweater”

Input Hair Conditions w/ Conditions w/o Conditions

Figure 32: Comparison of image generation with and without hair conditions. These images are
generated with the same text prompt “wavy and short hair, white sweater”. Additional text prompts
like “front face” or “side face” are appended to assist the head pose in the generated images.

In Fig. 33 we further showcase some generated images conditioned on various input hairstyles. The
texture colors in the input hairstyle renderings are only for aesthetic purposes and have no effect on
the skin or hair colors in the generated images. Although structural conditioned image generation
is not our focus and needs more future investigation on improving the structural alignment, this
application reveals the potential of deploying current T2I models as a “neural renderer” (Tewari
et al., 2020) within the traditional CG pipeline.

E LIMITATIONS

Our work still suffers from several limitations. First, our training data is limited, as high-quality
3D hair assets are notoriously challenging to acquire. Consequently, certain intricate hairstyles,
such as afro styles and various braided patterns, are underrepresented, which limits the generative
capabilities of our model and leads to unnatural outputs (see Fig. 34). Addressing this issue requires
the development of a systematic framework for efficiently capturing a diverse range of real-world
data – a critical challenge that remains unresolved in the hair modeling area. However, PERM could
serve as a pre-trained prior for efficient data capture, since it has the potential to fill in invisible
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Input Hairstyle 1 “digital twin of a human” Input Hairstyle 2 “side face, man, curly short hair”

Input Hairstyles Generated by PERM and Simulated by (Herrera et al., 2024)

“a man with short hair is shaking his head”

Figure 33: Hair-conditioned image generation using Adobe Firefly (Adobe, 2024).

parts of the hair, such as interiors and occluded regions, thereby accommodating more sparse image
inputs. The captured hair data could also be used to fine-tune PERM, further bridging the domain
gap between synthetic and real-world hairstyles.

Figure 34: Unnatural hairstyles generated from random sampling.

Second, our current single-view hair reconstruction pipeline adopts a relatively straightforward ap-
proach, relying on an optimization process that primarily focuses on per-pixel strand information
encoded in the 2D rendered images. These supervisions may fail to capture fine strand-level details,
yielding suboptimal outputs in extreme cases (see Fig. 35). To enhance reconstruction quality, ex-
isting methods (Chai et al., 2012; Nam et al., 2019) could be incorporated to trace continuous strand
segments from single-view or multi-view input images, providing a more reliable geometric clue for
our optimization. Additionally, more advanced optimization techniques could be explored. For ex-
ample, integrating patch-based losses, such as LPIPS (Zhang et al., 2018), may help encourage the
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preservation of strand details at the patch level, thereby improving the fidelity of the reconstructed
hairstyles.

Figure 35: Suboptimal single-view reconstruction results in extreme cases, where the hair is tied in
certain hairstyles such as buns (left) or heavily occluded by accessories such as hats (right).
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