
A Projective Drawing System

Osama Tolba Julie Dorsey Leonard McMillan

Laboratory for Computer Science
Massachusetts Institute of Technology, Cambridge, MA 02139

E-mail:{tolba,dorsey,mcmillan}@graphics.lcs.mit.edu

Abstract

We present a novel drawing system for composing and rendering
perspective scenes. Our approach uses a projective 2D representa-
tion for primitives rather than a conventional 3D description. This
allows drawings to be composed with the same ease as traditional il-
lustrations, while providing many of the advantages of a 3D model.
We describe a range of user-interface tools and interaction tech-
niques that give our system its 3D-like capabilities. We provide
vanishing point guides and perspective grids to aid in drawing free-
hand strokes and composing perspective scenes. Our system also
has tools for intuitive navigation of a virtual camera, as well as
methods for manipulating drawn primitives so that they appear to
undergo 3D translations and rotations. We also support automatic
shading of primitives using either realistic or non-photorealistic
styles. Our system supports drawing and shading of extrusion sur-
faces with automatic hidden surface removal and highlighted sil-
houettes. Casting shadows from an infinite light source is also pos-
sible with minimal user intervention.

CR Categories: I.3.3 [Computer Graphics]: Graphics Utilities—
Graphics Editors; I.3.6 [Computer Graphics]: Methodologies and
Techniques—Interaction Techniques

Keywords: Image-based Modeling and Rendering, Misc. 2D
graphics, Non-Euclidean Spaces, Non-Photorealistic Rendering

1 Introduction

The advent of computer graphics has greatly influenced many as-
pects of architectural drafting. Construction drawings, in the form
of plans, sections, elevations, and details, are seldom drawn by
hand today. In addition, hand-crafted physical models, tradition-
ally used for client presentations, have been largely replaced with
three-dimensional computer models and walk-throughs. Perspec-
tive drawing, which was once an important technique for exploring
and presenting designs, is virtually obsolete due to the speed and
flexibility of today’s CAD systems. However, 3D modeling sys-
tems are generally cumbersome to use, and ill-suited for the early
stages of design where freehand sketching is often more appealing.

Traditional perspective drawings are difficult to construct [3].
Only a skilled illustrator can make a drawing with correct propor-
tions. Furthermore, many construction lines are required to achieve
this proportionality, making the process laborious. In addition, the
views they depict are static, which reduces their 3D impression.
Proper shadow construction and shading are also time-consuming.
Finally, like all drawings on paper, they are difficult to edit or reuse.

Our goal is to provide interactive techniques to support perspec-
tive drawing. This problem has been largely neglected in 2D com-
puter graphics. Almost all current 2D graphics systems use drawing
primitives that are represented withEuclidean2D points. The pro-
cess of constructing a perspective drawing with these systems is
nearly as tedious as with traditional media.

We have developed a perspective drawing system that overcomes
many of the limitations of traditional perspective drawing and cur-
rent 2D computer graphics systems. Our system retains the ease-
of-use of a 2D drawing systems, but its projective representation
provides additional 3D-like functionality. We intend this tool for
applications that often do not require actual 3D modeling, such as
conceptual design, technical illustration, graphic design, and archi-
tectural rendering. In many cases, these applications strive to gen-
erate a single perspective view, or a set of views sharing a common
viewpoint.

We useprojective2D points to compose various renderings of a
scene and provide capabilities that are generally thought to require
3D models. For example, our system supports perspective drawing
guides, dynamic 3D-like viewing and object manipulation, scene
illumination and shading, and automatic shadow construction. In
addition, shape modeling operations, such as the simulation of 3D
extrusion, can also be performed using projective 2D points.

Our 2D representation does not allow us to simulate walk-
throughs. While we are able to simulate single-object motion, it is
not possible to correctly simulate the motion of a group of objects
(or the viewer). We use transformations of the image of a planar
object that are independent of its actual distance from the viewer.
In order to transform images of multiple objects, however, we need
relative depth information, which our system does not support.

1.1 Related Work

In [12] we introduced a projective 2D point representation and
demonstrated that perspective scenes, drawn with freehand strokes,
can be properly re-projected into new viewing directions with a
variable field of view, thereby giving the drawing an immersive 3D-
like effect. In this work, we extend the projective 2D point repre-
sentation to provide sophisticated tools for constructing perspective
geometric shapes. The shapes can be shaded and made to cast shad-
ows. We also provide tools to simulate the apparent 3D motion of
these shapes within a scene.

Projective representations underly all panoramic image-based
rendering (IBR) systems. For example, “QuickTime VR” rep-
resents environments with cylindrical panoramas and synthesizes
novel perspective views by providing an interface for panning, tilt-
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Figure 1: Two-dimensional drawing points are stored on the surface
of the unit sphere centered about the viewer. They are displayed by
projecting them onto a user-specified viewing plane.

ing, and zooming [1]. IBR systems typically facilitatenavigation
and visualization of a static scene. In our approach, we provide
controls forcomposingandediting illustrations.

An active area of research is the development of sketching inter-
faces for 3D modeling [2, 6, 13]. These approaches acknowledge
the difficulty of using standard interfaces to build 3D models. Their
main premise is that 3D shape can be inferred from freehand strokes
that follow a certain syntax, thereby allowing models to be gener-
ated very quickly. In our work, we do not infer 3D geometry, rather
we make 2D drawings that are3D-like.

Non-photorealistic rendering (NPR) techniques apply a “hand-
drawn” look to photographs and 3D renderings by simulating many
conventional artistic methods. For example, when mimicking pen-
and-ink styles, NPR uses hatching or stippling (a collection of short
strokes) as a means to convey tonal variation [8, 10]. Another NPR
technique is the use of silhouettes to emphasize shape [9]. Our
work adopts silhouetting and selected pen-and-ink styles for render-
ing shaded perspective drawings automatically, although the actual
rendering style is not the focus of our work.

2 Projective 2D points

In traditional drawing programs, primitives are specified via a col-
lection of 2D points. Generally, these points are described by two
coordinates, which can be imagined to lie on a plane. The coordi-
nates specify the position of a point relative to a specified origin and
two perpendicular basis vectors. In mathematical parlance, such
points are considered Euclidean 2D points.

This Euclidean representation of points is practically universal
to all 2D drawing systems. There are, however, alternative rep-
resentations of 2D points, which are not only more powerful than
Euclidean points, but also contain them as a subset. In particular,
the set of projective 2D points can be represented using three co-
ordinates in conjunction with the following rules: the origin is ex-
cluded, and all points of the form(a, b, c) andλ(a, b, c), whereλ is
non-zero, are equivalent. The subset of projective points for which
a value ofλ can be chosen, such thatλ(a, b, c) = (λa, λb, 1), is
the Euclidean subset.

There are several possible mental models for projective 2D
points, which are comparable to the plane of the Euclidean points.
We adopt a model in which all projective points lie on a unit sphere.
Thus, the preferred representation of the point(a, b, c) is the one
with λ chosen such thata2 + b2 + c2 = 1. We will further restrict
all values ofλ to be strictly positive. This additional restriction
results in a special set of projective points called theorientedpro-
jective set [11].

One advantage of projective 2D points is the ease with which
they can be manipulated. Unlike Euclidean points, translations of
projective points can be described by matrix products, thus allow-

Figure 2: A drawing of an outdoor plaza design shown as points
on the unit sphere centered about the viewer, and an array of views
generated with our system from the same drawing. The bottom row
views look in the same directions as the top row but tilt up.

ing them to be composed with other matrix products, such as scal-
ing and rotation. Projective points also permit re-projection to be
described as a simple matrix product. Another advantage is that
points at infinity are treated as regular points. For example, in a Eu-
clidean system the intersection of two parallel lines must be treated
as a special case, while using projective points it is treated as a
regular vanishing point. These properties of projective point repre-
sentations give unique capabilities to our two-dimensional drawing
system.

Each stroke (or shape) in our system is stored as a list of such
projective points obtained by back-projecting drawn image points
to lie on the surface of a unit sphere centered about a viewpoint,
while assuming that the drawing window subtends some solid an-
gle viewing port. The stroke also supports auxiliary attributes such
as pen color and thickness. A drawing is a collection of strokes
and shape primitives. Our projective representation allows us to
generate novel re-projections of the drawing (see Figure 1). These
re-projections can be interpreted as rotating and zooming a camera
about a single point in a three-dimensional space. However, re-
projections of projective 2D points do not exhibit parallax changes
resulting from changes in viewing position.

We also use projective points to represent directions such as van-
ishing points, motion trajectories, infinite light sources, and surface
normals. We refer the reader to [7] for a review of projective 2D
points and fundamental computational tools.

3 The Perspective Drawing System

We start this section with descriptions of our system’s perspective
viewing, guides, and primitives. Then we provide a detailed expla-
nation of the aforementioned 3D-like object manipulation.
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Figure 3: The drawing system supports skewed perspective frus-
tums that enable the user to draw on a frontal plane, such as in
the windows and bricks (shown with darker lines) drawn while fac-
ing the wall containing them. Without a skewed frustum this wall
would either lie outside the picture or appear small within a wide
field of view.

north, east north-east, north-west

north-east, north user-specified

Figure 4: We provide flexible vanishing points and perspective
grids as visual guides. Users may select from built-in direction or
specify arbitrary ones. The “rectangle” tool respects the current
vanishing points as well as the normal to the plane they define.

3.1 Perspective Viewing

In [12] we described how the re-projection of points (see Figure 2)
allows for a virtual camera interface that provides instant panning,
tilting, and zooming, similar to the QuickTime VR interface [1]. In
addition to rotation and zooming, we provide controls for moving
the image center, thereby allowing the user to work on parts of the
drawing that would otherwise lie outside the field of view, or be too
small if the field of view were made very wide. For example, when
a user orients the view such that a chosen plane is viewed frontally
(i.e. parallel to the viewing plane), the plane may be located out-
side the field of view. The user may then use the “image center”
tool to bring the plane into the picture in order to draw “on it” pro-
portionately. Useful examples include drawing bricks and windows
on a facade (see Figure 3). In computer graphics terminology, this
operation yields a skewed perspective frustum.

Figure 5: Examples showing the emulation of 3D translation (left)
and rotation (right).

3.2 Perspective Guides

The use of a projective representation provides two new types of
visual guides beyond the rulers and regular grids used by traditional
2D drawing systems: vanishing point guides and perspective grids.

Vanishing points are traditionally used as directional guides as
well as a means for geometric construction. We maintain them in
our system for use as guides when drawing lines and rectangles. We
also use vanishing points throughout this paper to compute various
directions and object points.

Our drawing system supports all of the conventional perspective
view categories, such as “single-point,” “two-point,” and “three-
point” perspective, since the viewing direction can be changed dy-
namically, thereby transforming single-point perspective into two-
or three-point perspective, and vice-versa. In fact, vanishing points
can be specified in arbitrary directions, which need not even be or-
thogonal (see Figure 4).

Vanishing points are directions represented by points on the unit
sphere. They can be visualized as poles of a sphere centered about
the viewer. When projected onto the viewing plane, the longitu-
dinal lines of the sphere appear as straight lines converging at the
vanishing point, providing the desired visual effect.

We also provide perspective grids in our system. The system au-
tomatically adjusts the grids to align with any two of the currently
active vanishing points. Grids, like vanishing points, can lie in gen-
eral positions. This provides the interface necessary for drawing
views containing parallel lines, rectangles, boxes, etc. (see Figure
4).

3.3 Perspective Shape Primitives

In addition to basic freehand drawing and straight lines, we sup-
port higher level shape primitives such as “perspective rectangles”
(images of 3D rectangles), which the user specifies with two corner
points. General-shape closed polygons are also supported. Such
primitives can have solid color for depicting non-transparent ob-
jects. When these primitives overlap, the order in which they are
drawn is used to convey occlusion. As with current 2D drawing
programs, the user can adjust this stacking order at any time.

3.4 Perspective Shape Manipulation

The drawing system supports manipulations of shape primitives
that appear as 3D rigid-body translations and 3D rotations. These
manipulations provide flexibility and, together with copy/paste op-
erations, they facilitate the creation of scenes containing symmetric
or repeating elements (see Figure 5).

In order to carry out these operations we use projective 2D points
and surface normals, which the system automatically infers from
user input. For example, the surface normal for a 3D rectangle
viewed in perspective is simply the cross product of its two vanish-
ing points (see Figure 6). In addition to their use in shape manipu-

27



Figure 6: Surface normals are inferred by computing the vector
cross product of any two vanishing points associated with the 3D
plane. The line joining the two vanishing points is the image of
the “line at infinity” of that plane, along whichall of its vanishing
points must lie. It can be envisioned in the spherical model as a
great circle perpendicular to the normal direction.

lation, surface normals are also crucial for performing other opera-
tions, such as modeling of aggregate shapes, shading, and shadow
projection.

In projective geometry, each point has a dual—a line whose co-
efficients equal the point’s coordinates. The dual to a point repre-
senting the normal to a 3D plane plays a special role. Suppose the
vector(a, b, c) represents the normal to a 3D plane. Its dual is the
projective 2D lineax + by + cw = 0. We can envision this line
as an equatorial great circle whose pole is(a, b, c). Clearly, points
on this circle representall directions parallel to the 3D plane, rep-
resenting ideal (rather than Euclidean) 3D points at infinity. Thus,
the line dual to the plane’s normal is the image of theline at infin-
ity associated with the plane, of which we make frequent use. For
example, we arrive at the direction of a 3D line that lies in a given
3D plane by computing the “vanishing point” at the intersection of
the line’s 2D image with the image of the plane’s line at infinity.

3.4.1 Apparent translation

We provide an intuitive user interface for simulating 3D translations
of planar objects. The user selects a vanishing point as the motion
trajectory (direction of translation) then uses a pointing device to
“drag” the object along this trajectory. Note that this operation re-
quires no knowledge of distance or depth of the object, as may ini-
tially be imagined. It is possible to carry out this transformation on
the image of a plane knowing only its surface normal.

We use mappings of the projective plane, represented by the unit
sphere, to accomplish this transformation. Such a mapping is often
referred to as acollineationor homographyH . It can be thought of
as a warping function applied to any object’s points through multi-
plying them by a 3×3 matrix as follows:
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or m′ ' Hm, (1)

wherea ' b denotesa = λb, andλ is an arbitrary scale factor.
As mentioned in [7], the image of a translating 3D plane is trans-

formed by the following homography:

H ' I +
δ

d
tnT ,

whereI is the 3×3 identity matrix,t is the motion trajectory,δ is
the translation distance, andn is the surface normal of the moving
plane, whose initial equation in 3D space isn ·P = d.

Figure 7: Apparent translation of the plane as it is carried out in our
system: Image points are transformed (warped) using a homogra-
phy that is inferred from two input points (m, m′) and the surface
normal. The motion trajectory is selected by the user from a list of
active vanishing points.

Since in a 2D projective setting we have no knowledge of the
distanced from the viewpoint to the surface or the actual displace-
ment of the planeδ, we deduce a new quantityα = δ/d. This
yields a single-parameter family of homographies compatible with
the translation of a 3D plane:

T (α) ' I + αtnT . (2)

All the quantities on the right-hand side of Equation 2 are known
except for the scalar parameterα, which can be inferred from a
single pair of points(m,m′) given the location of a point on the
surface before and after translation. Such a pair can be specified
using the pointing device, and must be constrained to lie on the
selected trajectory, hence the single degree of freedom (see Figure
7). We determineα as follows:

α = ±‖m
′ − λm‖

λ(n ·m)
, sign(α) = sign(t · (m′ − λm)). (3)

The value ofλ is given in the following derivation. From Equations
1 and 2 we get:

m′ = λ(I + αtnT )m = λm + λαt(n ·m), (4)

whereλ is a scale factor that we must determine before we can
solve forα. First, we eliminateα by taking the cross product of
Equation 4 witht:

m′ × t = λ(m× t).

This is an equation of the form:a = λb (vectora is λ-times vector
b), the solution for which is:

λ = ±‖m
′ × t‖

‖m× t‖ , sign(λ) = sign((m′ × t) · (m× t)).

In our application,λ is always positive. We then rewrite Equation 4
as:m′−λm = αλ(n ·m)t, and solve forα as shown in Equation
3.

Note thatn ·m = 0 in the denominator of Equation 3 means
that if the plane passes through the origin (d = 0), or is viewed
“edge-on,” the image of the planar shape is reduced to a line. In
this case we cannot use a homography to simulate 3D motion.

3.4.2 Apparent rotation

As with apparent translation, the apparent rotation of a 2D perspec-
tive primitive about a fixed point, or pivot, can be simulated using
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Figure 8: The rotation angleθ is inferred from a pair of input points
(m, m′) indicating the position of a point before and after rotation.
The point rotates in a plane perpendicular to the rotation axis. By
extending the linesmp andm′p to the rotation plane’s line at in-
finity we get the directionst andt′, which completely specify the
rotation angle.

Figure 9: Apparent rotation of the plane is carried out in two steps:
In the first step, the plane is rotated about the viewpoint. Then,
using an apparent 3D translation, it is moved back to the pivot point.

homographies. For example, a perspective rectangle can appear
to revolve about an arbitrary axis passing through a user-selected
pivot.

An intuitive user interface allows the user to specify the rotation
parameters. First, the user selects the axis from a list of active direc-
tions (vanishing points) and uses the pointing device to specify the
pivot. Then the rotation angle is specified by dragging the pointing
device about the pivot. For proper visual feedback, we make the
pointing device appear to orbit in a 3D plane perpendicular to the
rotation axis and passing through the 3D pivot. Therefore, we infer
the rotation angle from the change in thedirection of the imagi-
nary 3D line joining the pivot, whose image isp, and the pointing
device, represented bym andm′ (see Figure 8):

θ = ±sin−1(‖t× t′‖), sign(θ) = sign((t× t′) · a),

wheret andt′ represent the above-mentioned direction before and
after the rotation, given by:

t ' (m× p)× a, t′ ' (m′ × p)× a.

Once we have established the rotation axis, pivot and angle, we
rotate the object in two conceptual steps (see Figure 9):

1. In the first step, we rotate the object about the viewpoint (at
the origin of the world) using the rotation axis and angle de-
sired for the local rotation. All object points, including the
pivot itself, move to an intermediate position:

m′′ = R(a, θ)m.

2. Next, we use apparent 3D translation (Equation 2), wheret '
p− p′′, to “move the object back” to the original pivot:

Figure 10: An extrusion shape is created by making a copy of the
base stroke and transforming it via a pseudo-3D translation along
the extrusion direction. The normal of each facet is computed by
intersecting the line joiningmi andmi+1 with the base stroke’s
line at infinity in order to determine a vanishing pointvi, and then
computing the normal as the cross product of this vanishing point
with the extrusion trajectory.

Figure 11: By default, the extrusion trajectory is perpendicular to
the base stroke. However, skewness can be introduced by shifting
the extruded stroke in any chosen direction.

m′ ' T (α :p′′ → p)m′′.

Thus, the desired apparent rotation homography is a composition
of a 3D rotation matrix and a pseudo-3D translation homography:

m′ ' T (α)R(a, θ)m.

4 Aggregate Shapes

In this section we show how complex aggregate shapes can be mod-
eled under this framework using shaded 2D polygons. We have
implemented extrusion shapes as an example of such aggregate
shapes. The principles described here are potentially applicable to
other shapes as well, such as surfaces of revolution.

4.1 Extrusion

The user draws a freehand “base stroke” and selects the extrusion
trajectory from the list of active vanishing points, thendrags the
pointing device to specify the magnitude of the extrusion. The sys-
tem responds by making a copy of the base stroke, which we call
the “extruded stroke,” and applies apparent 3D translation to this
copy using a variant of Equation 2:

T (αe) ' I + αeen
T ,
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Figure 12: Geometry of the 3D planes used in extrusion.

whereαe is inferred from the dragging action ande is the selected
extrusion trajectory. Segments of the new extruded stroke are con-
nected to corresponding ones in the base stroke, thereby forming
the facets of the shape.

This approach assumes that the base stroke represents a planar
curve in 3D space. By default, the user interface initially assigns
the base stroke’s normal as the extrusion direction. Normals to the
facets are inferred from vanishing points (see Figure 10), allow-
ing for shading and shadow projection. Later, the user may shift the
extruded stroke in any direction, thereby simulating a skewed extru-
sion shape (see Figure 11). The extrusion direction is re-computed
as the intersection of any two facet sides connecting the base and
extruded stroke. Facet normals are also updated using this new ex-
trusion direction.

4.1.1 Apparent Translation

We also provide the ability to move an extruded shape in the scene
using the same interface that we described for planar objects (Sec-
tion 3.4.1). The apparent collective motion of the aggregate shape is
performed using two homographies:T (α) andT (α′) for the base
and extruded strokes respectively. We determine the base stroke’s
parameterα directly from user input as described in the planar ob-
ject case, while the parameterα′ for the extruded stroke can be
determined as follows:

α′ =
α

1 + αe(e · n)
.

Derivation: Suppose that the imaginary 3D curve represented by
the base stroke lies in a 3D plane whose equation isn ·P = d, and
the extruded curve lies in a parallel plane:n ·P′ = d′. From Figure
12 we can deduce that:

d′ = d + δe(e · n), (5)

whereδe is the extrusion distance. From our definition ofα in
Section 3.4.1, we have:

αe =
δe

d
, α =

δt

d
, α′ =

δt

d′
, (6)

whereδt is the translation distance. By substituting the value ofd′

from Equation 5 into 6, we have:

α′ =
δt

d + δe(e · n)
.

Sinceδe = dαe (Equation 6), we have:

α′ =
δt

d + dαe(e · n)
=

δt/d

1 + αe(e · n)
=

α

1 + αe(e · n)
.

Figure 13: An extrusion shape is rotated in several steps: First, both
the base and extruded strokes are rotated about their first points.
The first facet is also rotated in order to determine the final position
of the extruded stroke (top). Then the extruded stroke is moved to
the correct position using the first facet as guide (bottom).

Figure 14: An edge of an extrusion shape is determined to be on the
silhouette if its neighboring facets are drawn in opposite directions.

4.1.2 Apparent Rotation

Rotation of an extruded shape about a pivot is also possible. Any
point could serve as the origin of the rotation. For simplicity, we
choose the pivot to be the first point in the base stroke. We perform
the rotation in a series of steps (see Figure 13):

1. Rotate the base stroke about the rotation pivot.

2. Rotate the extruded stroke aboutits first point. This results in
an intermediate position for the extruded stroke.

3. Rotate the first facet of the shape about the rotation pivot in
order to establish the correct positions for the first and second
points in the extruded stroke.

4. Move the extruded stroke from its intermediate position to the
correct position determined in step 3. For this operation, we
use apparent 3D translation (Equation 2), where
t ' (m1 ×m′

1)× (m2 ×m′
2).

4.2 Silhouettes

Rather than drawing all facets of an extrusion, and in keeping with
the hand-drawn look, we have developed techniques to highlight
the boundaries and silhouettes of extrusion shapes. Silhouettes of

30



Figure 15: Points on a plane make a greater angle with its normal
as they move farther away from the viewpoint. This observation is
used to draw an extrusion shape in a back-to-front order.

Figure 16: The stippling direction is determined from the surface
normal and light direction.

faceted surfaces lie at the edges between two facets, one of which is
front-facing while the other is back-facing [9]. A simple 2D method
can be used to determine the existence of this condition [5]. If the
edges of two neighboring facets are drawn in opposite directions
(i.e., clockwise vs. counter-clockwise), the shared edge is on the
silhouette (see Figure 14).

4.3 Visibility

Although inter-object visibility cannot be unambiguously resolved
for 2D representations, intra-object visibility can be determined in
some instances. For example, the facets of an extrusion shape can
be drawn in a back-to-front order using the simple observation that
points on the base plane make a greater angle with the plane’s nor-
mal as they move farther away. For example, in Figure 15, we have
mj · n > mi · n; therefore, a facet based atmj is potentially oc-
cluded by another based atmi (assuming the extrusion shape is not
skew). Based on this dot product criteria, we create a sorted list
of facet indexes that we use for rendering. Re-sorting of this list is
necessary if the object undergoes apparent translation or rotation.

5 Shading

Our drawing system provides shading capabilities by inferring sur-
face normals (see above) and allowing the user to insert infinite light
sources into the scene. The picture can then be rendered with flat-
shaded solid color (using any local lighting model) or with artistic
styles such as stippling and hatching.

We have implemented a basic stippling algorithm (used in Figure
24-a) that employs short strokes whose direction is determined by
the surface normal and light direction (see Figure 16). The density
of the strokes is determined by a Lambertian shading computation,
and their position and length are randomized in order to emulate a
hand-drawn look (see code in Figure 17).

Another shading style that we support is a simple hatching
method (used in Figure 24-b). This method generates a look that

COMPUTE-STIPPLE

StippleDirection← n× s
Convert-StippleDirection-To-Screen-Coordinates
StippleDensity← MaxDensity×(1−min(0, n · s))
NumStipples← StippleDensity× Bounding-Box-Area
for i← 1 to NumStipples

do BeginPoint← Random-Point-Inside-Bounding-Box
EndPoint← BeginPoint + (Random-Length× StippleDirection)
Clip-Stipple-to-Shape; Back-Project-Stipple; Add-to-StippleList

Figure 17: Pseudo-code for stippling algorithm.

Figure 18: Shadows are projected automatically using the surface
normals and light source direction (shown with faded lines). The
shadow is initially attached to the object casting the shadow (top).
Later the user maydrag the shadow in order to simulate distance be-
tween the shadow-casting and shadow-receiving objects (bottom).
The system automatically re-projects the shadow during this drag-
ging operation.

is consistent with that of the manual illustrations in [3]. Instead of
Lambertian shading, it generates four levels of grey according to
the following rules: Shadows are hatched with maximum density,
objects facing away from the light are hatched with lighter density,
and light stippling is applied to objects that are dimly lit (i.e., the
angle between the normal and the light source is greater than 45
degrees).

Due to the computational overhead of artistic shading (about 2
seconds for a complex scene), we adopt the following strategy:
Shading strokes are computed in screen coordinates when there
is no camera motion, then back-projected and stored on the unit
sphere. As the user rotates the camera, the stored strokes are used
to render the scene. Although the stored shading becomes some-
what inaccurate during camera motion, this strategy provides ad-
equate feedback during scene navigation and avoids the flickering
that would result from re-computing the strokes during camera mo-
tion.

6 Shadows

Shadows play an important role in scene presentation due to their
effectiveness in conveying shape and relative position information.
Following classical line construction techniques, we have imple-
mented an automatic algorithm that computes the shape of an ob-
ject’s shadow as cast from an infinite (directional) light source like
the sun. However, due to the lack of depth information, the shadow
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Figure 19: The shadow of a stroke is determined by marching along
the stroke and projecting the shadow segments iteratively.m′

i is
determined fromm′

i−1 by intersectingl2 and l3, wherel2 is the
shadow projector andl3 is the shadow line.l3 is found by intersect-
ing an imaginary shadow plane with the shadow-receiving object.

PROJECT-SHADOW

n1 ← shadow-casting-object-normal
n2 ← shadow-receiving-object-normal
m′

1 ← m1 B Shadow attached to first point.
k← length[stroke] B Number of points in stroke
for i← 2 to k

do l1 ← mi−1 ×mi B Shadow-casting stroke line.
l2 ← s×mi B Shadow projector.
v← l1 × n1 B Vanishing point.
ns ← s× v B Shadow plane’s normal.
t← ns × n2 B Intersection of 2 planes.
l3 ← m′

i−1 × t B Shadow line.
m′

i ← l2 × l3 B Shadow point.

Figure 20: Pseudo-code for shadow projection.

is initially attached to the object casting the shadow, then the user
maydrag it to the desired position (see Figure 18). Thisdragging
operation is achieved with our “apparent 3D translation” method by
using the light’s direction as the translation trajectory. Later, if the
user re-positions the light source, the new position of the shadow
is recomputed automatically, without any further user intervention.
Note that, by using this shadow construction interface, it is possible
to construct a scene with incomplete or even inconsistent shadows.
It is the artist’s responsibility to maintain the scene’s integrity.

The information that is needed to compute the shadow is the sur-
face normals for both the object casting the shadow and the one
receiving it. The shadow of a stroke (or polygon) is determined by
marching along the stroke and projecting its successive segments
onto the shadow-receiving object. The first shadow point is at-
tached to the corresponding point in the stroke. Thereafter, each
shadow point is determined by intersecting ashadow linewith a
shadow projector—a line joining the light source and the shadow-
casting point (see Figure 19). The trajectory of the shadow line
is determined by intersecting an imaginaryshadow planewith the
shadow-receiving object. All these operations are performed in two
dimensions using vector cross products as shown in the pseudo-
code (see Figure 20).

Using similar techniques, shadows can be automatically re-
projected as the light source moves (see Figure 21). An imaginary
shadow plane is constructed encompassing the old and new shadow
projectors—its surface normal inferred from the old and new light
directions. The intersection of the shadow plane with the shadow-
receiving object gives us the trajectory along which the new shadow
point must lie. We intersect this trajectory with the new shadow
projector to arrive at the new shadow point (see code in Figure 22).

Figure 21: A shadow point is re-projected after some change in the
light source direction. The new shadow point is determined by in-
tersecting the linesl1 andl2, wherel1 is the new shadow projector,
and l2 is the line along which the movement of shadow point is
constrained.l2 is found by intersecting an imaginary shadow plane
with the shadow-receiving object.

REPROJECT-SHADOW-POINT

n← shadow-receiving-object-normal
l1 ← m × s′ B Shadow projector.
ns ← s× s′ B Shadow plane’s normal.
t← ns × n B Intersection of 2 planes.
l2 ← t ×m′

m′′ ← l1 × l2 B New shadow point.

Figure 22: Pseudo-code for shadow re-projection.

7 Examples

We have created many drawings with our system, which demon-
strate its usefulness and versatility. We used the system in con-
junction with other media, such as paper sketches, paintings, and
photographs. The following examples also demonstrate a variety of
looks the system can generate, including freehand strokes, silhou-
ette rendering, and fully-shaded scenes.
Paper Sketches.This example shows a panoramic sketch created
entirely from a series of freehand sketches originally drawn on pa-
per using a digital notepad. The panorama was assembled from
sketches pointing at four different directions by estimating the fields
of view visually (see Figure 23).
Shadows and Shading.Many of the features of our system were
used in the construction of a perspective drawing of the Court of
the Myrtles at Alhambra Palace, Spain (see Figure 24). For ex-
ample, special vanishing points aided in the drawing of the roof
tiles. Symmetrical and repeating architectural features, such as the
colonnade, where copied and moved using the “apparent transla-
tion” operation. Shadows, including those cast by the colonnade
and lattice onto the back wall, were projected semi-automatically.
The shadow re-projection algorithm was then used to visualize the
motion of the sun across the courtyard (see Figure 25).
Extrusion. This example shows the maze garden at Hampton Court
Palace, which was generated by extruding the plan drawing of the
maze (see Figure 26). Care was taken to maintain a proper depth
order amongst the hedges. Since our system relies on a stacking
order for conveying occlusion, it is not possible to have one shape
wrapping around another. Such a shape must be broken up during
modeling into smaller fragments—ones that are either exclusively
behind or in front of other objects. This limitation, however, can be
mitigated with a “grouping” tool, whereby visibility within a group
is resolved on a facet-by-facet basis rather than by objects.
Projective Textures. In [12] we demonstrated the usefulness
of integrating traditional drawing media and photographs with
computer-based drawing. However, our previous techniques re-
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Figure 23: Panorama of library interior shown as an unrolled cylin-
der (top), and two of the four sketches used to create it (bottom).

quired the use of a digital notepad to draw on paper, and we used
cylindrical panoramas exclusively rather than planar photographs.
We have added the capability to use scanned drawings and pho-
tographs as textures applied to perspective rectangles. Texture map-
ping in this fashion is achieved with projective 2D mappings and
image re-sampling [4]. We use transparency channels with texture
to alleviate the limitations of a rectilinear shape. For example, a
painting of a tree can be scanned and a binary mask created using
off-the-shelf image editing software. The mask defines the tree as
opaque and the rest of the rectangle transparent. The texture and
mask may then be applied to a perspective rectangle inside our sys-
tem. The user retains the ability to manipulate the rectangle as be-
fore, thereby allowing for precise placement of the tree in the scene.
Thus, a row of trees can be created effectively by translating copies
of the textured rectangle along the row’s axis.

We created a scene using textured perspective rectangles com-
posed against a panoramic backdrop (see Figure 27). Our objec-
tive was to visualize a proposed architectural design within its con-
text. An artist used acrylic paint to create a perspective rendering
of the proposed office building. We also took a series of concen-
tric photographs of the site from approximately the same position
as the painting, and used off-the-shelf software to create a cylin-
drical panorama, which was further processed with image editing
software to imitate the look of the painting. In our system we dis-
played this panorama and placed a textured rectangle containing
the painting, with a mask delineating the building. We added other
rectangles to depict trees, people, and foreground objects, such as
objects in the real scene that occlude the proposed building. The
system’s tools for translating and rotating rectangles provided a
flexible means for placing them.

8 Discussion and Future Work

We have presented a perspective drawing system that improves
upon traditional perspective drawing and greatly expands the util-
ity of current 2D computer graphics systems. The system has the
same ease-of-use as 2D systems, but offers many 3D-like qualities.
It is intended for situations where the construction of a full fledged
3D model may not be necessary, for example when the viewpoint
is constant. Therefore, time is potentially saved and artistic expres-
sion is not sacrificed.

The most obvious limitation of our system is the lack of relative
depth information between objects. To some extent, this limita-
tion can be overcome by allowing the user to adjust the stacking
order as is commonly done in current 2D drawing packages. How-
ever, the lack of true depth information manifests itself in various
other ways. For example, it prevents us from grouping objects and
translating them collectively. Analogously, true 3D walk-throughs
are not possible in this system. Furthermore, general lighting op-

Figure 24: Using our system, we created this artistic rendering of
the Court of the Myrtles at Alhambra Palace, Spain using stippling
(top) and hatching (bottom).

erations, such as shading with a local light source, require relative
depth information.

Some of the examples were created with the help of students,
who found the system’s freehand and geometric primitives easy to
use. However, understanding how object manipulation and shad-
ows work required some experience with perspective drawing. The
example of Alhambra was also somewhat cumbersome to construct.
It took five to six hours to arrive at convincing proportions and to
arrange the primitives in the drawing stack. This kind of time in-
vestment, however, is common among professional illustrators.

Our approach and representation have applications in other areas
of computer graphics. For example, they are suitable for computer
animation, where panoramic backdrops may be constructed using
our system, providing flexible panning and zooming, in addition to
shading and shadows.

We hope to embellish our system with additional modeling op-
erations, such as the ability to generate other types of aggregate
shapes. We could also include other ready-made primitives like
“boxes” and “cylinders.” In addition, the rendering styles we pre-
sented are by no means the only ones applicable to this approach.
We could use virtually any rendering style. As more sophisticated
automatic stippling or painterly rendering algorithms become avail-
able, they can be added to our system.
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Figure 25: This sequence, showing the motion of the shadow across
the back wall, was generated automatically from Figure 24.
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