Node Graph Optimization Using Differentiable Proxies

Yiwei Hu Paul Guerrero Milos HasSan
Yale University Adobe Research Adobe Research
New Haven, CT, USA London, UK San Jose, CA, USA

Adobe Research
San Jose, CA, USA
yiwei.hu@yale.edu

Holly Rushmeier
Yale University
New Haven, CT, USA
holly.rushmeier@yale.edu
Init (Proc.) MATch (Proc.)

Ours (Proc.) Target (Photo)

guerrero@adobe.com

mihasan@adobe.com

Valentin Deschaintre
Adobe Research
London, UK
deschain@adobe.com
Init (Proc.)

MATch (Proc.) Ours (Proc.)

Target (Photo)

Figure 1: Given a user or classifier provided procedural graph, our method enables and performs end-to-end optimization of
graph parameters towards the photograph of a surface. We show here results of our method, against previous work (MATch [Shi
et al. 2020]). In particular, compared to previous work, we enable gradient-based optimization of structure and scale of procedural
materials. Images which are renderings of procedural models are marked with (Proc.)

ABSTRACT

Graph-based procedural materials are ubiquitous in content pro-
duction industries. Procedural models allow the creation of photo-
realistic materials with parametric control for flexible editing of ap-
pearance. However, designing a specific material is a time-consuming
process in terms of building a model and fine-tuning parameters.
Previous work [Hu et al. 2022; Shi et al. 2020] introduced material
graph optimization frameworks for matching target material sam-
ples. However, these previous methods were limited to optimizing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGGRAPH ’22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9337-9/22/08...$15.00
https://doi.org/10.1145/3528233.3530733

differentiable functions in the graphs. In this paper, we propose a
fully differentiable framework which enables end-to-end gradient-
based optimization of material graphs, even if some functions of the
graph are non-differentiable. We leverage the Differentiable Proxy,
a differentiable approximator of a non-differentiable black-box func-
tion. We use our framework to match structure and appearance
of an output material to a target material, through a multi-stage
differentiable optimization. Differentiable Proxies offer a more gen-
eral optimization solution to material appearance matching than
previous work.

CCS CONCEPTS

« Computing methodologies — Rendering.

KEYWORDS

procedural materials, inverse material modeling

https://doi.org/10.1145/3528233.3530733

SIGGRAPH *22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

ACM Reference Format:

Yiwei Hu, Paul Guerrero, Milo§ Hasan, Holly Rushmeier, and Valentin
Deschaintre. 2022. Node Graph Optimization Using Differentiable Proxies.
In Special Interest Group on Computer Graphics and Interactive Techniques
Conference Proceedings (SIGGRAPH 22 Conference Proceedings), August 7-11,
2022, Vancouver, BC, Canada. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3528233.3530733

1 INTRODUCTION

Virtual environment creation relies on a number of artist-created
assets. Geometries, lighting, and materials constitute the core of
complex environments in movies, video games, or architectural
design. Graph-based modeling is commonly used in industry to
design sophisticated effects. In this paper, we focus on graph-based
procedural representations of materials, e.g., Spatially-varying Bidi-
rectional Reflectance Distribution Functions (SVBRDFs), using para-
metric operators organized as a computational graph.

SVBRDFs can be represented by pixel maps encoding spatially
varying material parameters of an analytical material model (e.g.,
Cook-Torrance [1982]). Pixel map representations are orders of
magnitude more compact than tabulated BRDFs, but are limited to
a fixed resolution and require inconvenient per-pixel operations
to edit. Procedural graph models, on the other hand, provide para-
metric flexible control of materials and allow the generation of
arbitrary-resolution material maps. The main challenge of proce-
dural materials is the time-consuming modeling process [Adobe
2022]. To achieve a specific material appearance, trained artists need
to carefully design the graph and hand-tune a number of parame-
ters. Previous work [Hu et al. 2019, 2022; Shi et al. 2020] focused
on reducing the design effort required by using various inverse
modeling frameworks, but with limitations e.g., only considering
parameters in differentiable nodes in a graph. In this paper, we
propose using Differentiable Proxies for non-differentiable nodes
to allow end-to-end optimization of entire material graphs.

Nodes in a material graph can typically be classified into two
types [Adobe 2022; Hu et al. 2022; Shi et al. 2020]: 1) Generators,
generating patterns and noises which usually require specifying
discrete parameters; 2) Filters, which are mostly smooth functions
manipulating the generated patterns to reach the envisioned ap-
pearance. Fig. 2 shows a few commonly used generators and filters.
In previous work, Shi et al. [2020] implemented a library of differen-
tiable filter nodes in the MATch system to enable a gradient-based
optimization of existing procedural graphs to match a target appear-
ance. MATch is however limited to differentiable operations, such
as Filter nodes and cannot optimize non-differentiable operations
such as most Generator nodes, which rely on discrete parameters
with non-differentiable effects e.g., level of randomness of inten-
sity/angles/sizes of patterns. This inherently prevents MATch from
adjusting for structural differences between target materials and
existing procedural graph output, limiting the generality of this
solution, as shown in Figs. 1&8.

To overcome this non-differentiability limitation, we propose
leveraging deep learning to enable end-to-end gradient-based op-
timization of a procedural material. Our method allows joint opti-
mization of all procedural graph parameters to match a material
sample in terms of both structure and appearance.

Hu et al.

Figure 2: Typical generators and filters used in material
graphs such as Substance Graphs where generators model el-
emental patterns, while filters are mostly smooth functions,
modifying the input image appearance.

The core idea is to use a Differentiable Proxy, implemented as a
differentiable neural network, to approximate a non-differentiable
procedure. We adopt the state-of-the-art generative-model-like
architecture StyleGAN2 and adapt its inputs and loss to our applica-
tion. By replacing the original non-differentiable procedures with
differentiable proxies, we create a differentiable space to optimize
all parameters, including discrete ones. More generally, such prox-
ies allow differentiation of black-box functions for which clearly
defined gradients do not exist or cannot be determined explicitly.

We propose a three-stage strategy to smooth the optimization
and avoid local minima. The pre-optimization step calibrates the
material appearance for better structure initialization. The global
optimization starts by efficiently finding a good generator initial-
ization and then jointly optimizes all parameters in the graph using
our differentiable Proxy. The post-optimization further refines the
material by switching back to the original non-differentiable gener-
ator, using the optimal generator parameters found in the last step,
and refining only differentiable parameters.

We experiment with different differentiable proxies with both
regular and stochastic generation patterns. We show that our neural
approximation well reproduces visual patterns created by the origi-
nal generators. Integrating our neural proxy, we analyze our novel
optimization routine and show that we can match the appearance
of challenging materials without manual hand-tuning.

In summary, we propose a more general inverse modeling frame-
work for material graphs through the following contributions:

o Neural differentiable proxies for non-differentiable procedures.

o A multi-stage optimization strategy, achieving a high-quality
match of a procedural material to a target appearance.

o An end-to-end fully differentiable pipeline that is more general
than previous approaches, allowing optimization of all graph
parameters without manual tuning.

The code is available at https://github.com/yiwei-hu/DiffProxy.

2 RELATED WORK
2.1 Material Procedural Modeling

Procedural modeling of materials aims at representing analytic
materials as procedures [Adobe 2022; Guehl et al. 2020; Guo et al.

https://doi.org/10.1145/3528233.3530733
https://doi.org/10.1145/3528233.3530733
https://github.com/yiwei-hu/DiffProxy

Node Graph Optimization Using Differentiable Proxies

2020a; Hu et al. 2019, 2022; Liu et al. 2016; Shi et al. 2020]. These
methods generate procedural content from an image, materials or
simply imagination. Closest to our method are works by Hu et
al. [2019; 2022] and Shi et al. [2020] which estimate parameters of
a given procedural graph to match an input material photo.

Hu et al. [2019] train a neural network for each procedural ma-
terials, only learning to predict their artist-exposed parameters as
opposed to all node graph parameters.

Shi et al. [2020] (MATch) implemented a differentiable version
of filter nodes in the Substance Engine [2022] to optimize their
continuous parameters to match a target material appearance. Be-
ing limited to filter nodes, MATch can only optimize the material
appearance (e.g., albedo, roughness) and fails to match material
structure.

Hu et al. [2022] present a semi-automatic pipeline for creating a
material graph given material maps, requiring artists to segment the
material they want to proceduralize. Hu et al’s non-differentiable
structure matching is disconnected from material property opti-
mization, preventing joint optimization. Additionally, their struc-
ture matching step requires a time-consuming (~20 min) gradient-
free optimization, dominating their runtime.

Our fully differentiable framework addresses the non-differentiability

of generator nodes and can be directly plugged into MATch [Shi
et al. 2020] and Hu et al. [2022] method, enabling end-to-end global
optimization with better and faster appearance matching.

2.2 Material Acquisition

Material acquisition targets the recovery of material properties
based on one or more images. Traditionally, dozens to thousands of
images were required to sample the light-view space as described in
the extensive survey by Guarnera et al. [2016]. More recently, deep
neural networks were used to improve reconstruction from a single
image [Deschaintre et al. 2018; Guo et al. 2021; Henzler et al. 2021;
Li et al. 2017; Zhou and Kalantari 2021] and from a small number
of images [Deschaintre et al. 2019, 2020; Gao et al. 2019; Guo et al.
2020b; Ye et al. 2021]. These methods can be separated into two
categories. The first category relies on a single forward inference
to recover the material parameters using an encoder/decoder ar-
chitecture [Deschaintre et al. 2018, 2019; Guo et al. 2021; Li et al.
2017; Ye et al. 2021; Zhou and Kalantari 2021], while the second
optimizes the latent space of a pre-trained decoder network [Gao
et al. 2019; Guo et al. 2020b; Henzler et al. 2021]. While these meth-
ods can recover material parameters, they primarily focus on the
reconstruction of material parameter pixel maps with their limited
resolution and editability. In contrast to pixel maps, we focus on
procedural representations of materials which allow users to para-
metrically control, edit and synthesize materials at any resolution
and scale.

2.3 Program Generation

Since a material graph can be interpreted as a program, approaches
that generate or infer programs from a given input are relevant to
our work. Most of the research in program generation and infer-
ence has focused on the 2D or 3D shape domain, with a few notable
exceptions [Ganin et al. 2018; Hu et al. 2018] which generate se-
quences of image edits using reinforcement learning. Early works

SIGGRAPH ’22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

focus on inverse proceduralization of given 3D shapes [Demir et al.
2016; Stava et al. 2010], while more recent work uses data-driven
methods to learn a prior over shape programs that can either be
used for program generation or program induction from a given
shape [Du et al. 2018; Ellis et al. 2019, 2018; Johnson et al. 2017;
Jones et al. 2020; Kania et al. 2020; Lu et al. 2019; Sharma et al. 2018;
Tian et al. 2019; Walke et al. 2020; Wu et al. 2019; Xu et al. 2021].
These methods operate in a different domain than our approach
and also differ in their problem setup. Our goal is to modify an
existing program, i.e., a computational graph, to more closely match
a target material image rather than generating a program from
scratch. We focus on inferring parameter configurations of a graph.

3 METHOD

Procedural material graphs are acyclic computational graphs gen-
erating spatially-varying (SV) material maps. The starting point
of a material graph is a set of generators producing patterns at
multiple scales which serve as building blocks of a material graph.
These generators typically define structures and multi-level texture
features of the material, like a brick or tile pattern. Starting from
the generator outputs, a variety of different filters modify their
appearance and combine them in multiple steps to achieve a final
realistic procedural material. Although the generators play an im-
portant role in material graph design, previous graph optimization
frameworks assume that the generators are pre-calibrated and fixed
during graph optimization [Hu et al. 2022; Shi et al. 2020], thus
they cannot optimize some features of the material. In contrast,
we propose a fully end-to-end optimization framework that allows
global and joint optimization of both material structures/features
and material appearance.

The main challenge for optimizing generator nodes is their non-
differentiablity. Our key idea is to avoid direct optimization of the
original generator by optimizing a differentiable proxy.

3.1 Differentiable Proxy

Given an arbitrary, non-differentiable, 2D image generator G(6),
where 0 represents its procedural parameters, we create a differen-
tiable proxy. To do so, we approximate G(6) with a convolutional
neural network (CNN) G(6) trained to reproduce the behaviour of
G(0): given a set of parameters 0; we want G(6;) = G(6;).

A natural solution would be to train a generative model (e.g.,
StyleGANZ). However, we notice that generative models’ optimiz-
able latent spaces (e.g., W+ in StyleGAN2) can be expressive beyond
the original generator scope. This allows the proxy to generate maps
that do not exist in the original generator space, leading to (1) poor
appearance matching and (2) complicating the process of mapping
back to the original generator parameters. The problem (1) is illus-
trated in Fig. 3. We trained the original StyleGAN2 with the data
sampled using the process described in Sec. 4. The insets of the
second column of Fig. 3 represent the direct outputs of the trained
StyleGAN2 which fail to match the targets. Solving problem (2) in
this context would require training an additional network mapping
from W+ to the original generator parameter space. A more detailed
discussion of the limits of using StyleGAN2 or AutoEncoder [Gao
et al. 2019] is available in the supplemental materials.

SIGGRAPH *22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

Init. StyleGAN2 Optim.
3 3] i

L' |'El{ lgl

Figure 3: Result using the original StyleGAN2 architecture
as differentiable proxy. Insets represent generator maps syn-
thesized by the trained proxy before/after optimization. We
follow the procedure described in Sec. 3.3 to optimize the
structure using StyleGAN2’s W+ latent space. We see that
it fails to generate a good pattern to match the target. Our
proxy solves these issues as can be seen in Fig. 1 and supple-
mental materials.

Real w/o adv. loss w/ adv. loss

Figure 4: Adding an adversarial loss helps reduce artifacts
when patterns are stochastic. We show here a typical case
with the scratches generator which generates highly stochas-
tic patterns.

To overcome this problem, we use a modified StyleGAN2 [Karras
et al. 2020] architecture. We modify the architecture input and train
our network to approximate the mapping between the parameters
and the output of a generator node. Specifically, rather than starting
from a random latent vector Z, we encode parameters 6 into an
intermediate latent space W, through a set of fully connected layers.
We then feed W to Adaln layers, similar to the original StyleGAN.

We further modify the architecture to use 0 as its sole input: we
remove the noise added in each block of the original StyleGANZ2,

Scratch Brick

Tile (Paraboloid)

= AN ‘:\
3] NS
g LA AL
2 u',’"\\\mu‘t\“““
3] n,,‘§§‘um,;\:‘m
o gy ANV AN
o iz A LA
S LN L AR
< L7 AR 2N
ZHN5k L7 l:,\\\\l
NSV T g AN QLT AN g8

vi?"’
AN

&
Nt
ﬁ‘('ﬂié\b

PPTBF

Figure 5: We compare generator maps synthesized by our
proxies (Approx.) with their original procedural counterpart
(Real) via randomly sampled parameters, showing that they
are very close. See supplemental documents for results gen-
erated from all our trained proxies.

making our network deterministic, allowing it to learn the one-to-
one mapping as we need.

We train our neural proxy using synthetic data, directly gener-
ated by carefully sampling (Sec. 4) the procedural generator. With
our modified architecture, we can train our differentiable proxy G
by directly sampling a data pair (6, I) and minimizing the per-pixel
difference between the approximated generator map G(0) and the
ground-truth I. We design a weighted loss function combining L;
loss, deep feature loss, style loss [Gatys et al. 2015], and an optional
adversarial loss Lagy:

L = 2oLy + A1Lgeqr + /12Lsty1e (+A3Lagdy) (1)

Deep feature loss Lfey; is defined by the L difference between deep
feature maps extracted from a pre-trained VGG19 ([Simonyan and
Zisserman 2015] neural network. Style loss Lyye is defined by the
L, difference between the Gram Matrices of extracted deep feature
maps. We empirically assign 49 = A2 = 1 and A; = 10.

In our experiments, the first three loss terms are generally enough
to guide the neural network to learn a one-to-one mapping for pro-
cedural generators (A3 = 0). However, for highly random patterns,
such as scratch generators, this combination of losses results in
small artifacts and struggles to reproduce stochastic behavior. To
solve this, we add an adversarial critic to improve the fitting quality,

Node Graph Optimization Using Differentiable Proxies

e ’
Refined

Figure 6: We optimize a leather material (Input) to match a
scratched potato skin (Target). We first match the overall ma-
terial parameters such as color or roughness (MATch, Stage
I). After global optimization (Stage II), we retrieve correct
scratch patterns. We then replace our proxy with the real
generator (Stage II*) and re-optimize the filter nodes with
fixed generators and a smaller learning rate, refining the
result (Refined) to best match the target.

Stage II*

Target

as shown in Fig. 4. For these stochastic generators, we adjust A3 > 0
to ensure that the loss is still dominated by the first three loss terms,
relaxing the one-on-one mapping goal, without replacing it. Lagy is
defined as the cross-entropy loss with R1 regularization [Mescheder
et al. 2018]. The critic takes both parameter 6 and generator map I
as input and evaluates whether it is a real or fake data pair.

3.2 Our Differentiable Proxies

In our experiments, we train differentiable proxies for generators
in both MATch and the more recent system by Hu et al. [2022]. In
the case of generators for MATch we train proxies for the following
generators, which represent the majority of generators used across
100 analyzed Substances: Brick Generator, Stripe Generator, Scratches
Generator, Tile Generator (Paraboloid), Tile Generator (Brick), Arc
Pavement Generator. In the case of Hu et al. [2022] we train a proxy
for the generator they used: Point Process Texture Basis Functions
(PPTBF) [Guehl et al. 2020]).

We compare in Fig. 5 generator maps synthesized with our
trained differentiable proxy G to those generated with the original
procedural generator G. Each result shows a randomly sampled set
of parameters, showing that our proxies can generate mask maps
which closely approximate those generated by G. This ensures that
we remain in the space of masks that can be generated by G during
proxy optimization, allowing us to project back the parameters to
the original non-differentiable procedural material graph.

3.3 Fully Differentiable Optimization

Given a user (or classifier [Shi et al. 2020]) chosen material graph
G, we convert it to its differentiable counterpart by replacing the
procedural generator nodes with our proxies and the filters with

SIGGRAPH ’22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

differentiable filter nodes from the DiffMat library [Shi et al. 2020].
The optimizable parameters are 6 = (6, 67) where 0, and 0 drive
our differentiable proxies and the differentiable filters respectively.

The material graph G outputs a set of spatially-varying 2D ma-
terial maps M = G(0) (e.g., albedo, normal, roughness, and metal-
lic). A rendering operator R can be applied to synthesize an im-
age I = R(M). Our optimization process recovers an optimal 6*
that minimizes the difference d(I, I*) between our rendered image
I = R(M) and a user provided target image I*:

0" = argmin Ly = argmind (I, I*) (2)
0 [%

Leveraging G differentiability, we optimize 0* with gradient descent
using PyTorch [Paszke et al. 2019] as a general auto-differentiation
framework.

A key challenge is the existence of local minima in the joint
optimization of both generators and filters. While we relax the
generator differentiability, the original discrete attribute variation
tends to form local minima, making the optimization non-convex.
To stabilize it, we propose a multi-stage optimization strategy.

3.3.1 Stage I: Pre-optimization. We start by only matching the
overall material appearance, i.e., only optimizing 0 with a fixed
04. This is a pre-optimization step. We use the MATch framework.
The loss function we defined is a multi-scale style loss:

Ly, = [IGM(I) = GM(I")||x ®)

where GM is an operator that computes Gram Matrices of extracted
deep features [Gatys et al. 2015]. We compute and aggregate the
loss function at multiple resolutions (256x256, 128x128 and 64x64).
This pre-optimization step calibrates basic material properties (e.g.,
albedos and roughness). In few cases MATch fails to improve the
initialization, in which case, we directly move to Stage II.

3.3.2 Stage II: Global Optimization. We use the optimization re-
sults from Stage I to initialize this step. We now optimize the entire
set of parameters 6 = (0, 05). To minimize the impact of local
minima, we find a good initialization. We randomly sample possi-
ble generator parameters and initialize our optimization with the
parameters which generate the closest appearance to the targeted
image:

Ly, =IF(Iy) = F(Ipllx 4
where F denotes the extracted deep features from a pre-trained neu-
ral network [Simonyan and Zisserman 2015]. I and I are grayscale
version of I and I* respectively. We can efficiently compare the
grayscale images as color and roughness values were already opti-
mized. In practice, we sample 500 possible parameters initialization
for a differentiable graph G in less than a minute.

Using the selected initialization of 6, we optimize all parameters
0 with a combination of feature and style loss:

Lo = |[F(I) = F(I")|1 + a|IGM(I) = GM(I")||x ©)

where « is a weighting variable. We use feature loss as a main
loss term to measure the structure and appearance similarity. We
also add a small style loss component as a flexible component that
matches the overall statistics of material appearance as the proce-
dural material may not always achieve pixel-perfect matches of
real material pictures. We empirically choose a = 0.05 and, similar
to Eq. 3, we evaluate the loss function using a multi-resolution

SIGGRAPH *22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

General Generator Space

Artists’ Space

Figure 7: We sample the data to train our proxies by sampling
in the parameter spaces used by artists. On the left is an
example of pattern generated from this space, while on the
right are three examples of (undesirable) patterns that can be
generated with the same generator, with uniform sampling
of the entire parameter space.

approach. To further reduce the risk of encountering local minima,
we set a larger learning rate, decaying over the optimization.

3.3.3 Stage Ill: Post-Optimization. As our differentiable proxies
may generate slightly different images than the original generators,
we fine-tune the results of our Global Optimization step. In this step,
we switch our optimized proxies back to their original procedural
counterparts with the optimized parameters 8;. As the generators
are now non-differentiable, we fine-tune the filter nodes parameters
0. This fine-tuning step is the same as Stage I, using a multi-scale
style loss as described in Eq. 3, with a closer material structure and
a finer learning rate, refining the appearance to better match the
target. We show the result of each of these step in Fig. 6, and videos
of the optimization process in the supplemental material.

4 IMPLEMENTATION

To train our models, we build a dataset for a chosen generator by
randomly sampling its parameter space. However, a fully random-
sampling strategy leads to unrealistic or invalid patterns. For in-
stance, some parameter combinations for a brick pattern generator
may not lead to a brick-like pattern, as shown in Fig. 7.

To build a more representative dataset, we use a heuristic sam-
pling approach. For popular systems, we leverage existing collec-
tions of node graphs. For example when training proxies compati-
ble with MATch, (based on Substance), we analyze the parameter
distribution from Substance Source, a database containing 7000+
artist-designed material graphs [Adobe 2022]. We compute the
range of parameters used by artists, as well as their mean and stan-
dard derivations, and independently sample each parameter. We
generate a 300,000 256x256 images dataset for each differentiable
proxy G, which, depending on the procedural generator complexity
takes 5 ~ 10 hours. Once trained, each G requires less than 100 MB.

To train the PPTBF proxy for the recent Hu et al. [2022] frame-
work, we use the PPTBF released dataset [Guehl et al. 2020] and
resample the parameters based on the parameter distributions an-
alyzed from that dataset. We sample an additional 500,000 mask
maps to increase the sample density.

We implement our differentiable proxies and optimization pipeline
in PyTorch. We train our proxy using a Nvidia RTX 3090 with a
CPU of Intel 19 10900K. To reach convergence, 60 epochs of training
usually takes 2 ~ 3 days on a single GPU, using Adam [Kingma
and Ba 2015] with a learning rate of 0.0025, a batch size of 32 and

Hu et al.

normalizing the parameters between 0 and 1 to stabilize the train-
ing. When applying adversarial training, we set y = 10 for R1 and
train the discriminator with Adam and a learning rate of 1073,

For the parameter optimization itself, we use the PyTorch auto-
differentiation framework and use Adam(f = (0.9,0.999) with a
learning rate decaying strategy (lr is halved every 200 steps) to
optimize for our target appearance.

We set a smaller learning rate for pre- and post- optimization
steps (0.002) because the optimization space of continuous parame-
ters of filter nodes are more convex. We set a larger initial learning
rate for global optimization (0.02) as we observe that a larger early
step size helps avoid local minima. The full optimization takes
around 3 ~ 5 minutes for 1000 steps, depending on the complexity
(numbers of nodes and connections) of the material graphs. For
reference, MATch optimization takes 2 ~ 3 min.

5 RESULTS AND COMPARISONS

In this section, we show our end-to-end material optimization re-
sults and compare to previous work. We use our differentiable prox-
ies to enable material graph optimization in two frameworks [Hu
etal. 2022; Shi et al. 2020]. We show our material graph optimization
results in the MATch framework, using the MATch graph selection
step and compare to it in Figs. 1 & 8. Our approach better matches
the target appearance thanks to our optimization of the material
structure and scale. We show results with synthetic data in Fig. 8
and with real-world photographs in Fig. 1, showing that our ap-
proach can match a variety of generators and appearances. Please
see our supplemental materials for additional results. In a quantita-
tive evaluation, the average of feature/style loss of all materials we
optimized is 0.408/0.261 for ours against 0.548/1.038 for MATch.

In Fig. 9, we demonstrate the generality of our differentiable
proxy in another inverse modeling framework by Hu et al. [2022]
where we train a PPTBF [Guehl et al. 2020] proxy which can sim-
ply be plugged into the proposed pipeline to replace their time-
consuming structure matching process. Following their approach,
we optimize our proxy towards a user-segmented mask map. Our
proxy enables gradient-based optimization, reaching similar ma-
terial appearance to their method, with a 40x speedup (their opti-
mization requires 20 minutes, while ours converges in 30 seconds).
Please see our supplemental materials for additional examples.

We highlight that despite the optimization running on fixed reso-
lution, we recover procedural model properties, making our results
entirely procedural. Our results can therefore be generated with
arbitrary resolution, without a costly high-resolution optimization,
and preserve the editing possibilities inherent to procedural models,
allowing artists to use our results as a base to kickstart their final
vision. We also preserve the original generator properties, such as
tileability for the Substance generators, making our results tileable.
We demonstrate editability, high resolution material synthesis, and
tileability in Fig. 10.

6 LIMITATIONS

We show limitations of our method in Fig. 11. In a Substance we
experimented with, the graph structure was such that the optimiza-
tion was more prone to local minima. This could however be solved
by simple manual edits of the graph to simplify the gradient flow.

Node Graph Optimization Using Differentiable Proxies

Init (Proc.)

MATch (Proc.) Owurs (Proc.) Target

LIl

SIGGRAPH ’22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

Init (Proc.) MATch (Proc.)

Ours (Proc.)

Target

Figure 8: Results on synthetic materials. We sample random parameters in a graph as the target appearance and show that our
optimization is able to recover these parameters even with a distant initialization. See supplemental materials for additional

results.

Input Hu et al. Ours

Figure 9: We plug our differentiable PPTBF proxy in Hu et
al’s [2022] framework. Their framework optimizes parame-
ters of a procedural PPTBF mask to match a user-segmented
mask map with a gradient-free method, taking 20 minutes.
Using SGD, enabled by our proxy, we achieve similar results
in 30 seconds. See supplemental materials for additional com-
parisons.

Another limitation comes from our loss which does not match
elements per pixel, missing local details (see wood node in the
second row of Fig. 11), or not precisely match the scale (see the first
result in Fig. 10 which has a 7x7 tiles target, but a 6x7 tiles result).

Additionally, due to the importance-sampled parameter space,
patterns out of the parameter range used by the artist covered in
the training of a proxy are not well reproduced. For instance, when
the number of bricks is outside of the distribution, the differentiable
proxy cannot reproduce the desired patterns (third row).

Similar to recent inverse procedural material modeling methods
[Hu et al. 2019; Shi et al. 2020], our approach fails if the selected ini-
tial graph is not expressive enough to match the target appearance,
which is illustrated in the last row of Fig. 11.

Finally, although most filters in Substance are differentiable, a
few complex filter nodes like FX-map can also have discrete and
random behaviors that remain difficult to differentiate. Creating an
image-conditioned differentiable proxy for these filter nodes is an
interesting future challenge.

7 CONCLUSION

We present a general differentiable solution that optimizes both gen-
erator and filter nodes in a material graph. We introduce the Differ-
entiable Proxy, a neural-network-based universal approximator to
establish a differentiable parameter space for non-differentiable gen-
erators. We demonstrate, with a multi-stage optimization pipeline,
that the proxies enable end-to-end optimization of both struc-
tures and appearance to match material photographs or SVBRDF
maps. We apply gradient-based optimization, supported by auto-
differentiation, on a wide range of material graphs, showing that
our framework can achieve high-quality procedural materials from
various exemplars. We believe our proxies will enable better ma-
terial proceduralization and improve differentiability of complex
black box functions.

SIGGRAPH *22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

Target Our Proc. Edits

High Resolution Material

Figure 10: Our results are procedural and can easily be edited
(First row). After optimization, our results can be synthesized
in arbitrary resolution (cropped 2K, cropped optimization
target image as inset, 2nd row). Finally, we preserve the gen-
erators’ tileability, showing here 2x2 tiled results.

ACKNOWLEDGMENTS
This work was supported in part by NSF Grant No. IIS-2007283.

REFERENCES

Adobe. 2022. Substance Designer. https://substance3d.adobe.com.

R. L. Cook and K. E. Torrance. 1982. A Reflectance Model for Computer Graphics.
ACM Trans. Graph. 1, 1 (Jan. 1982), 7-24. https://doi.org/10.1145/357290.357293

Ilke Demir, Daniel G Aliaga, and Bedrich Benes. 2016. Proceduralization for editing 3d
architectural models. In 2016 Fourth International Conference on 3D Vision (3DV).

Hu et al.

Initialization Ours Target

Figure 11: Limitations. First row: On complex material
graphs, in a few cases, our method can lead to a local mini-
mum, despite our initialization approach. Second row: our
loss function targets global appearance matching, here it
fails to reproduce the knots details in the wood plank. Third
row: our proxy fails to reproduce patterns when parameters
fall outside of the range used by artists. Here, the number
of bricks are beyond our defined sample ranges. Last row:
a common limitation in procedural modeling, optimizing a
less expressive material graph which does not model specific
targeted patterns cannot represent well the target.

IEEE, 194-202.

Valentin Deschaintre, Miika Aittala, Frédo Durand, George Drettakis, and Adrien
Bousseau. 2018. Single-Image SVBRDF Capture with a Rendering-Aware Deep
Network. ACM Trans. Graph. 37, 4, Article 128 (Aug 2018), 15 pages.

Valentin Deschaintre, Miika Aittala, Frédo Durand, George Drettakis, and Adrien
Bousseau. 2019. Flexible SVBRDF Capture with a Multi-Image Deep Network.
Computer Graphics Forum (Proceedings of the Eurographics Symposium on Rendering)
38, 4 (July 2019), 1-13.

Valentin Deschaintre, George Drettakis, and Adrien Bousseau. 2020. Guided Fine-
Tuning for Large-Scale Material Transfer. Computer Graphics Forum (Proceedings
of the Eurographics Symposium on Rendering) 39, 4 (2020), 91-105. http://www-
sop.inria.fr/reves/Basilic/2020/DDB20

Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana Schulz, Daniela
Rus, Armando Solar-Lezama, and Wojciech Matusik. 2018. Inversecsg: Automatic
conversion of 3d models to csg trees. ACM Transactions on Graphics (TOG) 37, 6
(2018), 1-16.

Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Ar-
mando Solar-Lezama. 2019. Write, Execute, Assess: Program Synthesis with

https://doi.org/10.1145/357290.357293
http://www-sop.inria.fr/reves/Basilic/2020/DDB20
http://www-sop.inria.fr/reves/Basilic/2020/DDB20

Node Graph Optimization Using Differentiable Proxies

a REPL. In Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.),
Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/
50d2d2262762648589b1943078712aa6-Paper.pdf

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum.
2018. Learning to Infer Graphics Programs from Hand-Drawn Images.
In Advances in Neural Information Processing Systems, S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.),
Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/file/
6788076842014c83cedadbe6b0ba0314-Paper.pdf

Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, SM Ali Eslami, and Oriol Vinyals.
2018. Synthesizing programs for images using reinforced adversarial learning. In
International Conference on Machine Learning. PMLR, 1666-1675.

Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, and Xin Tong. 2019. Deep
Inverse Rendering for High-resolution SVBRDF Estimation from an Arbitrary
Number of Images. ACM Trans. Graph. 38, 4, Article 134 (July 2019), 15 pages.
https://doi.org/10.1145/3306346.3323042

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. 2015. A Neural Algorithm of
Artistic Style. arXiv:1508.06576 [cs.CV]

Dar’ya Guarnera, Giuseppe Claudio Guarnera, Abhijeet Ghosh, Cornelia Denk, and
Mashhuda Glencross. 2016. BRDF Representation and Acquisition. Computer
Graphics Forum 35, 2 (2016), 625-650.

Pascal Guehl, Remi Allégre, Jean-Michel Dischler, Bedrich Benes, and Eric Galin. 2020.
Semi-Procedural Textures Using Point Process Texture Basis Functions. Computer
Graphics Forum 39, 4 (2020), 159-171. https://doi.org/10.1111/cgf.14061

Jie Guo, Shuichang Lai, Chengzhi Tao, Yuelong Cai, Lei Wang, Yanwen Guo, and Ling-
Qi Yan. 2021. Highlight-Aware Two-Stream Network for Single-Image SVBRDF
Acquisition. ACM Trans. Graph. 40, 4, Article 123 (July 2021), 14 pages. https:
//doi.org/10.1145/3450626.3459854

Yu Guo, Milos Hagan, Lingqi Yan, and Shuang Zhao. 2020a. A Bayesian Inference
Framework for Procedural Material Parameter Estimation. Computer Graphics
Forum 39, 7 (2020), 255 - 266.

Yu Guo, Cameron Smith, Milo§ Hasan, Kalyan Sunkavalli, and Shuang Zhao. 2020b.
Material GAN: Reflectance Capture Using a Generative SVBRDF Model. ACM Trans.
Graph. 39, 6, Article 254 (Nov. 2020), 13 pages. https://doi.org/10.1145/3414685.
3417779

Philipp Henzler, Valentin Deschaintre, Niloy J Mitra, and Tobias Ritschel. 2021. Gen-
erative Modelling of BRDF Textures from Flash Images. ACM Trans Graph (Proc.
SIGGRAPH Asia) 40, 6 (2021).

Yiwei Hu, Julie Dorsey, and Holly Rushmeier. 2019. A Novel Framework for Inverse
Procedural Texture Modeling. ACM Trans. Graph. 38, 6, Article 186 (Nov. 2019),
14 pages. https://doi.org/10.1145/3355089.3356516

Yiwei Hu, Chengan He, Valentin Deschaintre, Julie Dorsey, and Holly Rushmeier. 2022.
An Inverse Procedural Modeling Pipeline for SVBRDF Maps. ACM Trans. Graph.
41, 2, Article 18 (jan 2022), 17 pages. https://doi.org/10.1145/3502431

Yuanming Hu, Hao He, Chenxi Xu, Baoyuan Wang, and Stephen Lin. 2018. Exposure:
A White-Box Photo Post-Processing Framework. ACM Transactions on Graphics
(TOG) 37, 2 (2018), 26.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Judy Hoffman, Li Fei-Fei,
C Lawrence Zitnick, and Ross Girshick. 2017. Inferring and executing programs for
visual reasoning. In Proceedings of the IEEE International Conference on Computer
Vision. 2989-2998.

R. Kenny Jones, Theresa Barton, Xianghao Xu, Kai Wang, Ellen Jiang, Paul Guerrero,
Niloy Mitra, and Daniel Ritchie. 2020. ShapeAssembly: Learning to Generate
Programs for 3D Shape Structure Synthesis. ACM Transactions on Graphics (TOG),
Siggraph Asia 2020 39, 6 (2020), Article 234.

Kacper Kania, Maciej Zigba, and Tomasz Kajdanowicz. 2020. UCSG-Net - Unsupervised
Discovering of Constructive Solid Geometry Tree. In arXiv.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo
Aila. 2020. Training Generative Adversarial Networks with Limited Data. In Proc.
NeurlIPS.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
In 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann
LeCun (Eds.). http://arxiv.org/abs/1412.6980

Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. 2017. Modeling Surface Appearance
from a Single Photograph using Self-augmented Convolutional Neural Networks.
ACM Trans. Graph. 36, 4, Article 45 (2017), 11 pages.

Albert Julius Liu, Zhao Dong, Milo§ Hasan, and Steve Marschner. 2016. Simulating the
Structure and Texture of Solid Wood. ACM Trans. Graph. 35, 6, Article 170 (Nov.
2016), 11 pages. https://doi.org/10.1145/2980179.2980255

Sidi Lu, Jiayuan Mao, Joshua Tenenbaum, and Jiajun Wu. 2019. Neurally-guided
structure inference. In International Conference on Machine Learning. PMLR, 4144~
4153.

Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. 2018. Which Training
Methods for GANs do actually Converge?. In International Conference on Machine
Learning (ICML).

SIGGRAPH ’22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates,
Inc., 8024-8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-
high-performance-deep-learning-library.pdf

Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji.
2018. CSGNet: Neural Shape Parser for Constructive Solid Geometry. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Liang Shi, Beichen Li, Milo§ Ha$an, Kalyan Sunkavalli, Tamy Boubekeur, Radomir
Mech, and Wojciech Matusik. 2020. MATch: Differentiable Material Graphs for
Procedural Material Capture. ACM Trans. Graph. 39, 6 (Dec. 2020), 1-15.

Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks
for Large-Scale Image Recognition. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1409.1556

Ondrej Stava, Bedrich Benes, Radomir Méch, Daniel G Aliaga, and Peter Kristof. 2010.
Inverse procedural modeling by automatic generation of L-systems. In Computer
Graphics Forum, Vol. 29. Wiley Online Library, 665-674.

Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T. Freeman, Joshua B.
Tenenbaum, and Jiajun Wu. 2019. Learning to Infer and Execute 3D Shape Programs.
In International Conference on Learning Representations.

Homer Walke, R Kenny Jones, and Daniel Ritchie. 2020. Learning to infer shape
programs using latent execution self training. arXiv preprint arXiv:2011.13045
(2020).

Chenming Wu, Haisen Zhao, Chandrakana Nandji, Jeffrey I Lipton, Zachary Tatlock,
and Adriana Schulz. 2019. Carpentry compiler. ACM Transactions on Graphics
(TOG) 38, 6 (2019), 1-14.

Xianghao Xu, Wenzhe Peng, Chin-Yi Cheng, Karl DD Willis, and Daniel Ritchie. 2021.
Inferring cad modeling sequences using zone graphs. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 6062—-6070.

Wenjie Ye, Yue Dong, Pieter Peers, and Baining Guo. 2021. Deep Reflectance Scan-
ning: Recovering Spatially-varying Material Appearance from a Flash-lit Video
Sequence. Computer Graphics Forum (2021). https://doi.org/10.1111/cgf.14387
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14387

Xilong Zhou and Nima Khademi Kalantari. 2021. Adversarial Single-
Image SVBRDF Estimation with Hybrid Training. Computer Graph-
ics Forum 40, 2 (2021), 315-325. https://doi.org/10.1111/cgf.142635
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.142635

https://proceedings.neurips.cc/paper/2019/file/50d2d2262762648589b1943078712aa6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/50d2d2262762648589b1943078712aa6-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/6788076842014c83cedadbe6b0ba0314-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/6788076842014c83cedadbe6b0ba0314-Paper.pdf
https://doi.org/10.1145/3306346.3323042
https://arxiv.org/abs/1508.06576
https://doi.org/10.1111/cgf.14061
https://doi.org/10.1145/3450626.3459854
https://doi.org/10.1145/3450626.3459854
https://doi.org/10.1145/3414685.3417779
https://doi.org/10.1145/3414685.3417779
https://doi.org/10.1145/3355089.3356516
https://doi.org/10.1145/3502431
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/2980179.2980255
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1409.1556
https://doi.org/10.1111/cgf.14387
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14387
https://doi.org/10.1111/cgf.142635
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.142635

	Abstract
	1 Introduction
	2 Related Work
	2.1 Material Procedural Modeling
	2.2 Material Acquisition
	2.3 Program Generation

	3 Method
	3.1 Differentiable Proxy
	3.2 Our Differentiable Proxies
	3.3 Fully Differentiable Optimization

	4 Implementation
	5 Results and Comparisons
	6 Limitations
	7 Conclusion
	Acknowledgments
	References

