
NeMF: Neural Motion Fields for Kinematic Animation

Chengan He
Yale University

chengan.he@yale.edu

Jun Saito
Adobe Research

jsaito@adobe.com

James Zachary
Adobe Research

zachary@adobe.com

Holly Rushmeier
Yale University

holly.rushmeier@yale.edu

Yi Zhou
Adobe Research

yizho@adobe.com

Abstract

We present an implicit neural representation to learn the spatio-temporal space
of kinematic motions. Unlike previous work that represents motion as discrete
sequential samples, we propose to express the vast motion space as a continuous
function over time, hence the name Neural Motion Fields (NeMF). Specifically,
we use a neural network to learn this function for miscellaneous sets of motions,
which is designed to be a generative model conditioned on a temporal coordinate
t and a random vector z for controlling the style. The model is then trained as a
Variational Autoencoder (VAE) with motion encoders to sample the latent space.
We train our model with a diverse human motion dataset and quadruped dataset
to prove its versatility, and finally deploy it as a generic motion prior to solve
task-agnostic problems and show its superiority in different motion generation and
editing applications, such as motion interpolation, in-betweening, and re-navigating.
More details can be found on our project page: https://cs.yale.edu/homes/
che/projects/nemf/.

1 Introduction

Motion synthesis and editing is a core problem in animation and game production, as well as in
emerging applications like artificial agents. Traditional algorithms have limited capability of automat-
ically producing convincing motions with high diversity and complexity. With the recent availability
of large-scale motion capture data, more interest has shifted to deep learning-based methods. People
have adapted various deep learning technologies such as Recurrent Neural Networks [34], Rein-
forcement Learning [25, 35] and Normalizing Flows [10] for skeletal motion generation. However,
those methods are designed as an auto-regressive process that depends on its own past values and
some stochastic terms. With this constraint, those methods have to sequentially predict the motion
at discrete time steps. Consequently, they cannot just directly infer the motion at certain frames
since they must predict the past motion first. Moreover, with this temporally asymmetric design, it is
always hard for those methods to incorporate the control or editing of future frames and, thus, it is
difficult to apply them to tasks like motion in-betweening.

Inspired by the recent success in neural radiance fields (NeRF) for novel view synthesis [32], we
introduce Neural Motion Fields (NeMF) to model the spatio-temporal space of kinematic motions.
Given that a motion sequence consists of different poses at different time steps, we represent a motion
sequence as a continuous function f : t 7→ f(t) which parameterizes the entire sequence by the
temporal coordinate t. This function can be approximated by a multilayer perceptron network (MLP)
whose parameters are optimized by minimizing the reconstruction loss between the generated and
ground truth motion.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://cs.yale.edu/homes/che/projects/nemf/
https://cs.yale.edu/homes/che/projects/nemf/

Motion Prior

Temporal Field

z1 z2

f(t; z1)

t1 t2 t3 t4 t5

f(t; z2)

t′1 t′2 t′3 t′4 t′5

Figure 1: Overview of generative NeMF, which consists of a motion prior and a continuous temporal
field. By sampling the motion prior, NeMF is able to infer a variety of motions with different styles.
By sampling the temporal field, NeMF is able to generate motion at arbitrary frames.

However, the NeMF function defined above overfits one motion sequence. To extend it to general
motion synthesis, as illustrated in Figure 1, we further introduce a random vector z as the conditioning
variable to the function as f(t; z), which now encodes the mapping from the normal distribution to
the manifold spanned by all plausible motions. By varying z, we expect f to output motion with
different styles, and by varying t, we obtain the pose at arbitrary time. We train this generative
NeMF model in the form of a Variational Autoencoder (VAE), where motion sequences are fed
to convolutional encoders first to obtain the sampling of z, and then z is passed through an MLP
decoder for the reconstruction of the whole motion. To the best of our knowledge, our paper presents
the first continuous and generative implicit motion representation that can sample different types of
motion at an arbitrary time step.

This neural motion representation can serve as a generic motion prior to solve task-agnostic problems.
Following Li et al. [21] who trained a hierarchical human motion prior and applied it in different tasks,
we demonstrate utilizing a trained NeMF in various applications, including motion interpolation,
motion in-betweening and motion re-navigating. We formulate those tasks as optimization problems
to find the latent variable z that minimize the target energies and restore the complete plausible
motion sequences. Although we did not train this NeMF model for any of these tasks specifically, it
achieves performance equivalent or superior to task-specific alternatives in our experiments.

In summary, our contributions are as follows:

• We propose NeMF that represents the continuous motion field as a function over time and
design a VAE architecture to train a generative NeMF.

• We validate that our model can reconstruct and synthesize motion with superior quality and
diversity than state-of-the-art neural motion priors.

• We demonstrate NeMF in various offline motion editing and creation tasks.

2 Related Work

To clarify our design choices, we categorize the kinematic motion modeling into two types: time
series models and space-time models. The former approach views motions as the kinematic pose
evolving over time, which is often the choice for interactive applications where the future depends on
unknown factors such as real-time user inputs. The latter is our approach, which is suitable for offline
applications where we know what to expect for the overall motion within some time range.

2.1 Time Series Models

Time series models are often formulated as an auto-regressive model that predicts the future based on
current and past observations. The predictions are fed into the model again to make further predictions
recursively. GPDM [44] modeled such dynamics of human locomotion over time with Gaussian
process. Recently people studied various deep learning-based auto-regressive architectures, including
Recurrent Neural Networks [5, 29, 49], Reinforcement Learning Networks, Neural ODE [16],
Transformers [1, 22, 36] and other attention models [28]. Many works demonstrated success in

2

real-time interactive kinematic character controls [13, 40–42, 47]. The auto-regressive approach is
also suitable for embracing the uncertainty of future predictions with generative models, for example,
in the form of VAE as in HuMoR [38] and Motion VAE [25], and in the form of Normalizing Flows
as in MoGlow [10].

In applications, Harvey et al. [9] used LSTM [11] with positional encoding to achieve the state-of-
the-art result for the motion in-betweening task. But it is limited to a fixed in-betweening setting
where some consecutive past frames need to be given as the seed. One of the key applications of our
model is also motion in-betweening, but our method has no constraint on the setting and can generate
the missing motion both between motion clips and between sparse keyframes.

2.2 Space-Time Models

Different from time series models, another approach is to directly model the spatio-temporal kinematic
state itself. Such models are often used in combination with a time series model, as in [20] where
the dynamic control policy is learned over the GPLVM-based spatial kinematic prior. One of our
inspirations, Motion Fields [19], can be seen as a variant of this approach where the time-series
dynamics are learned over the spatial kinematic model represented directly by the data and a hand-
crafted distance function. More recently, space-time neural network models overcame the scalability
issue in previous methods due to the availability of large-scale datasets [12, 14, 15, 45, 48]. Zhou et
al. [51] demonstrated long-term motion in-betweening by learning the space-time kinematic prior
without supervision using Generative Adversarial Networks (GAN) [7]. Kaufmann et al. [18] also
proposed a convolutional network for motion in-betweening. Our other inspiration, HM-VAE [21],
learned a generic motion prior for multiple downstream applications. However, their reliance on a
temporally convolutional decoder fixes the output frame rate, thus limiting its application to temporal
sub-sampling. As a space-time model, our work NeMF has the advantage of being able to edit
any frames in the motion sequence while maintaining fidelity and the source style compared to the
aforementioned works.

2.3 Implicit Neural Representations

Implicit neural representations explosively gained popularity with the success of SIREN [39] and
NeRF [32], which achieved state-of-the-art results in many tasks including novel view synthesis,
geometry reconstruction, and solving differential equations. Among different tasks, the core idea
of neural implicit representations is to build a continuous function that maps the spatial or temporal
coordinates to any signal at that location while maintaining high-frequency details. Inspired by
their success, our key insight is to interpret time as the parameter of a motion function and learn
the landscape of the spatio-temporal kinematics manifold as an implicit motion representation
parameterized by temporal coordinates. Similar ideas have been proposed in modeling time-varying
3D geometries [33] and dynamic scenes [24, 37], and we extend it to the animation domain.

3 Formulation

In this section, we will first give the definition and notation of our motion representation, then present
the formulation of NeMF for a single motion sequence, followed by an extended version of generative
NeMF for the entire motion space.

3.1 Motion Representation

Similar to Zhou et al. [51] and Li et al. [21], we divide the motion into two parts: local motion, which
contains the pose of the skeleton relative to the root at time t, and global motion, which is the global
translation of the root joint. Following Fussell et al. [6], we represent the local motion at time t as a
matrix Xt composed of joint positions xp

t ∈ RJ×3, velocities ẋp
t ∈ RJ×3, rotations xr

t ∈ RJ×6 in
6D rotation form [50], and angular velocities ẋr

t ∈ RJ×3:

Xt = (x
p
t ẋp

t xr
t ẋr

t) ∈ RJ×15, (1)

where J is the number of joints. Since all other quantities can be computed from joint rotations,
we focus on predicting joint rotations xr

t in the formulation. We then factor out the root orientation
rot ∈ R6 from local motion by multiplying the inverse of the root transform to each quantity in Xt.

3

In this way, all poses will be transformed to a local space with the same facing direction, thus making
them easier to learn for our network. For the global motion, based on previous works [21, 51], we use
a neural network to predict the velocity of the root joint ṙt ∈ R3 as well as its height rht ∈ R from
Xt. We provide details of our global motion predictor in the supplemental.

3.2 Neural Motion Fields

Unlike most other works that represent motion as a discrete sequential process, we represent motion
as a continuous vector field of kinematic poses in the temporal domain. Hence we define this motion
field as a function that maps temporal coordinates t to joint rotations and root orientations:

f : t 7→ (xr
t , r

o
t). (2)

The function f can be approximated by a neural network with the parameters θ that can be optimized
by minimizing the reconstruction loss between the generated and ground truth motion, where the
ground truth poses can be considered as discrete samples of f at integer time steps.

Similar to NeRF [32], we train an MLP with positional encoding of t to fit a given motion sequence.
Considering a sequence with T frames, we first convert the 6D rotations xr

t and rot to rotation matrices
Rt and Ro

t with the Gram-Schmidt-like process described in [50], and then compute the geodesic
distance to measure the rotational difference:

Lrot =

T∑

t=1

arccos
Tr

(
Rt(R̂t)

−1
)
− 1

2
, Lori =

T∑

t=1

arccos
Tr

(
Ro

t (R̂
o
t)

−1
)
− 1

2
. (3)

We then evaluate the L1 loss on local joint positions obtained from forward kinematics (FK) [43],
which regularizes the skeletal topology to obtain better results [34]:

Lpos =

T∑

t=1

∥xp
t − x̂p

t ∥1. (4)

The reconstruction loss is finally expressed as a weighted sum of the above terms with weighting
factors λrot, λori, and λpos:

Lrec = λrotLrot + λoriLori + λposLpos, (5)
and we optimize the network parameters θ to minimize this loss function.

3.3 Generative Neural Motion Fields

Although the neural motion field defined above can represent a motion sequence in a compact way, it
cannot generate a variety of motions. To change to a different motion sequence, the entire network
needs to be re-trained from scratch, which severely limits its application. Therefore, in this section,
we extend NeMF to a generative model which can represent the entire motion space instead of a
specific motion sequence.

First of all, we introduce a conditioning variable z to the input of f , thus parameterizing the entire
spatio-temporal kinematics space as a function:

f : (t, z) 7→ (xr
t , r

o
t), (6)

where z defines the spatial location on the manifold and t controls the temporal evolution of the
sequence.

We then propose a VAE to formulate Equation 6 as a latent variable model with Gaussian distribution.
Based on our motion representation, the VAE contains two separate convolutional motion encoders to
learn and parameterize the posterior distribution of latent variables zl and zg , which control the local
motion and root orientation respectively:

qϕ1(zl | X) = N (zl;µϕ1(X), σϕ1(X)), qϕ2(zg | ro) = N (zg;µϕ2(r
o), σϕ2(r

o)), (7)

where X and ro are the concatenation of all Xt and rot within the same sequence.

The combination of zl and zg forms the final representation of the latent variable z, which are then
passed through the MLP decoder to produce joint rotations xr

t and root orientations rot for each time
step t, thus, defining the output probability distribution pθ(x

r, ro | zl, zg).

4

In addition to the probabilistic perspective, our model can also be interpreted as learning a motion
prior from input sequences, where each latent variable on the prior corresponds to a natural motion
sequence. The MLP decoder then approximates the mapping function between the motion prior and
pose space, thus allowing the navigation in the pose space to have a consistent motion style with a
fixed z.

During training, we consider the modified variational lower bound:

log pθ(x
r, ro) ≥ Eqϕ1

,qϕ2
[log pθ(x

r, ro | zl, zg)]−DKL(qϕ1(zl | X) ∥ p(zl))

−DKL(qϕ2
(zg | ro) ∥ p(zg)),

(8)

where the expectation term measures the reconstruction error of the decoder, and the KL divergence
DKL regularizes the encoders’ outputs to be near p(zl) and p(zg), which are N (0, I) in our scenario.
Thus, we formulate the loss function L = Lrec + λKLLKL with the weight λKL to approximate
Equation 8, and the network parameters (ϕ1, ϕ2, θ) are optimized during training to minimize the
loss.

3.4 Applications

After training the generative NeMF, we can deploy it as a generic motion prior to solve different tasks
via latent space optimization.

Motion In-betweening is a long-standing animation creation problem of generating motion in the
interval between two clips or sets of keyframes. Our insight is, given a sparse set of observations, we
can search in the latent space of NeMF to approximate the entire underlying motion thanks to our
continuous representation. Thus, we define the energy function as the reconstruction loss on given
frames T , which measures the differences on joint rotations, root orientations, joint positions and
root translations:

z∗
l , z

∗
g := argmin

zl,zg

∑

T
λrotLrot + λoriLori + λposLpos + λtransLtrans, (9)

where Ltrans weighted by λtrans evaluates the L1 loss on root joint positions rt predicted from our
standalone global motion predictor. To facilitate convergence, SLERP is first used to perform
interpolation in the joint angle space, and then the interpolated inputs are passed through encoders to
obtain the initialization of zl and zg .

Motion Re-navigating is a task where we redirect a reference motion with a new trajectory while
preserving its style. More formally, the goal is to generate a motion that 1) looks similar to the given
exemplar; and 2) follows the given trajectory as close as possible. To formulate the energy function,
we first borrow ideas from time-series analysis by introducing the soft dynamic time warping metric
(LsDTW) [4] to measure the similarity between joint positions in the canonical frame [38]. Then, we
project the predicted root joints onto the ground plane and compute the L1 loss between them and the
given 2D trajectory. Last but not least, an additional regularization term is introduced to ensure that
the generated and reference motion have a similar angle between their forward direction ft and the
tangent direction tt on the trajectory, where the similarity is determined by LsDTW as well. In total,
the energy function we try to minimize can be expressed as:

z∗
l , z

∗
g := argmin

zl,zg

T∑

t=1

λsimLsDTW(xp
t , x̂

p
t) + λtraj∥rproj

t − r̂proj
t ∥1 + λangleLsDTW(ft · tt, f̂t · t̂t), (10)

where λsim, λtraj and λangle are three weighting factors introduced to balance different terms. In our
experiments, zl are initialized from the encoder’s output, while zg are optimized from scratch.

4 Experiments

We train our model on the AMASS dataset [27] for most of the experiments. After processing, we
have roughly 20 hours of human motion sequences at 30 fps for training and testing. We additionally
train our model for the reconstruction experiments on a quadruped motion dataset [47], which contains
30 minutes of dog motion capture at 60 fps. Details are provided in the supplemental.

5

4.1 Sanity Test

4.1.1 Motion Reconstruction

We first perform a sanity test to validate our single-motion NeMF model described in Section 3.2,
where we test the reconstruction capability of NeMF with different lengths of motions.

For AMASS data, we pick 16 different motion sequences for each length and report the reconstruction
errors in Table 1. For evaluation metrics, we report mean rotation error (MRE, ◦) and mean position
error (MPE, cm) for each joint, which measure the geodesic distance between joint rotations and
Euclidean distance between root-aligned joint positions. For the root joint, we further report its
orientation error (MOE, ◦), which measures the geodesic distance on the root orientation. From the
results shown in Table 1, we can observe that a simple MLP with positional encoding is able to to
achieve very low reconstruction error (lower than 4mm positional error and 0.7◦ rotational error) for
sequence lengths varying from 32 to 512 frames.

Table 1: Mean reconstruction errors of single-motion
NeMF for motion of different lengths. Mean rotation
error (◦), mean position error (cm), and mean orien-
tation error (◦) are reported.

Sequence Lengths

Metrics 32 64 128 256 512

MRE 0.610 0.482 0.381 0.369 0.379
MPE 0.314 0.249 0.213 0.192 0.170
MOE 0.465 0.340 0.344 0.321 0.300

We further train our NeMF model on a very
long (4, 336 frames and 73s) quadruped mo-
tion sequence and visualize the result in the
supplemental. Our predicted motion is visu-
ally almost identical to the ground truth.

4.1.2 Temporal Sampling

Unlike other motion models, NeMF is theoret-
ically guaranteed to generate smooth motion
in arbitrary frame rates. We find that the di-
mension of the Fourier features generated by
positional encoding plays a critical role in the
generalization here.

1 3 5 7 9 11 13 15 17 19 21

L

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

M
ea

n
P

er
-J

oi
n

t
V

el
o

ci
ty

30fps

60fps

Figure 2: Mean per-joint velocity (cm/s) evalu-
ated on the same motion with different L.

Since the maximal frequency of the Fourier fea-
tures is determined by a hyperparameter L as
illustrated in [32], we uniformly sample L from
1 to 21 and train NeMF with these different se-
tups. For each trained model, we respectively
generate 30 and 60 fps motions and report their
mean per-joint velocity as the smoothness met-
ric in Figure 2. Although a large value of L
does not harm the results with the training frame
rate, such a model struggles to generalize to dif-
ferent frame rates. However, since positional
encoding is crucial to achieve satisfactory re-
construction results, we set L = 7 throughout
our experiments to balance the trade-off. In the
supplemental video, we show that the generated
motion remains smooth even sampled at 240 fps.

4.2 Generative NeMF

4.2.1 Evaluation Metrics

We evaluate the reconstruction capability of our generative NeMF model through direct network
inference and motion synthesis capability through latent space sampling. To better describe motion
reconstruction, we further measure the Euclidean distance on the root joint translation (MTE, cm)
and global joint displacement on the final step (FDE, cm) [45]. For estimating the versatile motion
quality, we introduce three metrics, namely Fréchet Inception Distance (FID), diversity (Diversity),
and foot skating (FS), following related papers [8, 25, 36, 47]. Generally speaking, a lower FID
suggests a more natural result, a higher diversity indicates a more various result, and foot skating
shows the accumulated drift of foot joints during contact. Please see our supplemental for details.

6

4.2.2 Ablation Study

We first take a look at the effect of the positional encoding function. By removing positional encoding,
the input temporal coordinate t will be passed directly to the MLP to infer pose parameters. Results
in the first row of Table 2 show that the model without positional encoding produces higher errors in
most metrics we evaluate, thus demonstrating the necessity of positional encoding in terms of the
fidelity of the results.

We further experiment on using single motion encoder instead of two separated ones to process
both local motion and root orientation. In this simpler design, the root orientation and local motion
are entangled in the same latent space. From the results we reported in the second row of Table 2,
though the simpler version produces a lower reconstruction error on the root orientation, it has worse
performance on joint rotations, joint positions and root translations.

Table 2: Ablation study.

Motion Reconstruction Motion Synthesis
MRE ↓ MPE ↓ MOE ↓ MTE ↓ FID ↓ Diversity ↑ FS ↓

No Positional Encoding 6.413 2.952 6.027 33.524 2.146 2.783 0.612
Single Motion Encoder 8.661 4.503 5.982 35.391 2.185 2.806 0.818

Full Model 5.988 2.870 6.157 29.692 2.073 2.774 0.573

4.2.3 Latent Space Sampling

In our model, we can navigate in the latent space to control the motion styles and synthesize novel
motion. To examine the smoothness of the latent space and see whether our model can blend
different styles of motion at the sequence level, we linearly interpolate z from two existing motion
sequences and infer the novel ones. Previous works like [46] demonstrate motion interpolation
between similar motion patterns, such as from walking to zombie-style walking. However, we show
in the supplemental video that our model can blend the high-level perceptual style between much
harder cases like jumping and punching.

Since we disentangle the latent space for local motion and root orientation, we also experiment to
combine zl and zg from different motions. Through this, we can create interesting editing results
like canceling the spinning motion of a pirouette jump (see supplemental).

4.2.4 Comparison with Other Generative Models

We compare our method with other deep learning-based motion priors on motion reconstruction and
synthesis in Table 3. We select HuMoR [38] and HM-VAE [21] to represent the “time series model”
and “space-time model” respectively.

Table 3: Comparison of NeMF with other generative motion models.

Motion Reconstruction Motion Synthesis
MRE ↓ MPE ↓ MOE ↓ MTE ↓ FDE ↓ FID ↓ Diversity ↑ FS ↓

HuMoR [38] 13.008 9.071 17.097 23.882 62.756 8.687 1.741 0.904
HM-VAE [21] 10.258 7.686 13.054 90.924 137.218 7.998 2.002 0.690

Ours 5.988 2.870 6.157 29.692 42.985 6.508 2.118 0.566

Although HuMoR can generate convincing motions, we observe two shortcomings of HuMoR: 1) in
motion reconstruction, HuMoR’s results will gradually diverge due to its auto-regressive prediction.
From the quantitative results in Table 3 and qualitative results in Figure 3, divergence can be observed
in both the large FDE and global translation difference respectively. 2) In motion synthesis, HuMoR
tends to favor common motions like walking when inferring long sequences, thus yielding a relatively
high FID and low diversity. As for our method, we can get rid of these artifacts since we handle the
entire sequence at once instead of predicting the motion frame by frame.

7

HM-VAE [21] HuMoR [38] Ours

Figure 3: Comparison of motion reconstruction with other generative motion models. Predicted
motions are overlapped on top of the ground truth motion (yellow).

Compared to HuMoR and our model, HM-VAE models an over-smoothed latent space, thus filtering
out high-frequency details in both the reconstructed and synthesized motions. In short, our model
outperforms these state-of-the-art methods in most of the metrics reported in Table 3, as well as
achieving the closest match of the ground truth motion visualized in Figure 3.

4.3 In-betweening Tasks

In this task, we compare our method with traditional and deep learning-based motion in-betweening
methods. For quantitative evaluation, we use the FID and foot skating metrics only, since reconstruc-
tion errors cannot fully reflect the quality of motion for highly-varied plausible solutions.

Table 4: Motion clips in-betweening.

FID

Length (frames) 10 20 30

SLERP 0.027 0.170 0.455
Inertialization [2] 0.025 0.184 0.496
RMI [9] 0.264 0.362 0.609
HM-VAE [21] 0.137 0.387 0.675
Ours 0.024 0.141 0.365

Foot Skating

SLERP 1.193 1.200 1.023
Inertialization [2] 1.237 1.234 1.151
RMI [9] 1.629 1.833 1.643
HM-VAE [21] 0.862 0.835 0.832
Ours 0.646 0.697 0.660

Table 5: Sparse keyframe in-betweening.

FID

Length (frames) 5 10 15 20

SLERP 0.032 0.305 0.713 1.191
HM-VAE [21] 2.300 2.370 2.434 2.423
Ours 0.085 0.302 0.612 0.879

Foot Skating

SLERP 0.868 1.224 1.278 1.193
HM-VAE [21] 0.892 0.837 0.841 0.751
Ours 0.719 0.826 0.837 0.804

Motion Clips In-betweening. In this task, we aim at generating motion in the interval from 10
frames (0.33s) to 30 frames (1s) between two clips. We compare with traditional local interpolation
methods including SLERP and Inertialization [2], and deep learning-based methods including Robust
Motion In-betweening (RMI) [9] and HM-VAE [21]. In the results reported in Table 4, our method
outperforms all other alternatives quantitatively. We further experiment on real dancing footage by
randomly picking several pairs of videos from AIST++ [23] with their corresponding SMPL [26]
parameters. We set the transition length to 30 frames and optimize for a latent variable to produce
the gap-filling motion. As demonstrated in Figure 4, our model is capable of producing a natural
one-second transition between these real dancing footage.

Sparse Keyframe In-betweening. In this task, a set of sparse keyframe skeleton poses are given
every 5, 10, 15 or 20 frames. We compare our method with SLERP and HM-VAE, and report the
quantitative results in Table 5. Neither RMI nor Inertialization is applicable here since they both
require multiple frames at the beginning.

From Table 5, SLERP has the best FID score for interval of 5 frames, but becomes worse with
increased interval length. Compared to SLERP and HM-VAE, ours has much better quantitative and
qualitative results, especially for long intervals (Figure 5). In the onionskin images, though SLERP’s

8

Figure 4: Generating the transition (cyan) between AIST++ motion clips (yellow).

result looks similar to ours, our result has more natural high-frequency details. HM-VAE fails to
reconstruct the poses at keyframes and generates over-smoothed results. Our result, although different
from the ground truth, is visually plausible as in the supplemental video.

SLERP HM-VAE [21] Ours Ground Truth

Figure 5: Comparison of sparse keyframe in-betweening. The translucent in-between poses are
generated from the opaque reconstructed keyframes given every 20 frames.

4.4 Re-navigating Tasks

In this task, we experiment on redirecting the reference motion to different synthetic trajectories.
Qualitative results are reported in Figure 6. The original motion style is well preserved in the results,
and the character has a natural orientation while walking along the trajectory.

Reference motion Straight line Sinusoidal curve

Figure 6: Motion re-navigating from a reference walking motion (left) to a straight line (middle) and
sinusoidal curve (right).

5 Conclusion

We propose an implicit neural motion representation that defines a continuous motion field over style
and time. We design it to be a generative model for the whole motion space with a learned prior. We
design and test different network architectures and use the trained generative model as a motion prior
for solving different tasks like motion interpolation, motion in-betweening and motion re-navigating.

5.1 Limitation and Future Work

In this paper we train the generative NeMF model in the form of a VAE, so it has the limitation of
not always giving satisfactory results when sampling the latent space. A promising direction is to
design other generative architectures such as GAN, Normalizing Flows, and Diffusion Models for
NeMF. Besides, though several latent variables may exist that satisfy the optimization constraints,
our deterministic optimization process can only find one possible z as the final result, thus limiting
probabilistic motion synthesis like MoGlow [10].

9

In the future, since the optimization problems we formulated are analogous to the latent space opti-
mization problems of StyleGAN [17], how to transfer the algorithm of those successful applications
designed for StyleGAN to our NeMF setup is an interesting direction to explore.

So far our method focuses on motion modeling and cannot adapt to outputs with different body
shapes. On the other hand, some works [3, 30, 31] leverage implicit representations to model skinned
articulated objects with given poses. Therefore, it would be interesting to combine our work with
them to enable the animation and rendering of a specific character with novel motions.

To keep our model task-agnostic, we choose to solve motion tasks by optimizing z. But for practical
applications, task-specific inference models may be preferred for performance consideration. To have
an end-to-end inference model for real-time applications, a possible solution is to design and train the
encoder to directly predict z with different input settings.

5.2 Broader Impact

Our model can be applied for kinematic motion creation in animation and game production. Due to
the limitation of diversity in the training data, our model is not guaranteed to generate feasible but
uncommon motions. We cannot guarantee that our model will avoid generating motions that could be
perceived as offensive to some viewers.

Acknowledgments and Disclosure of Funding

This work was supported in part by NSF Grant No. IIS-2007283. Many thanks to Ruben Villegas for
helpful discussions. Special thanks to Jiaman Li for sharing with us the pre-trained HM-VAE model.

References
[1] Emre Aksan, Manuel Kaufmann, Peng Cao, and Otmar Hilliges. A spatio-temporal transformer for 3d

human motion prediction. In 2021 International Conference on 3D Vision (3DV), pages 565–574. IEEE,
2021. 2

[2] David Bollo. Inertialization: High-Performance animation transitions in ‘gears of war’. Proc. of GDC
2018, 2018. 8

[3] Xu Chen, Yufeng Zheng, Michael J Black, Otmar Hilliges, and Andreas Geiger. Snarf: Differentiable
forward skinning for animating non-rigid neural implicit shapes. In International Conference on Computer
Vision (ICCV), 2021. 10

[4] Marco Cuturi and Mathieu Blondel. Soft-dtw: A differentiable loss function for time-series. In Proceed-
ings of the 34th International Conference on Machine Learning - Volume 70, ICML’17, page 894–903.
JMLR.org, 2017. 5

[5] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Malik. Recurrent network models
for human dynamics. In Proceedings of the IEEE international conference on computer vision, pages
4346–4354, 2015. 2

[6] Levi Fussell, Kevin Bergamin, and Daniel Holden. Supertrack: Motion tracking for physically simulated
characters using supervised learning. ACM Trans. Graph., 40(6), dec 2021. 3

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems, vol-
ume 27. Curran Associates, Inc., 2014. 3

[8] Chuan Guo, Xinxin Zuo, Sen Wang, Shihao Zou, Qingyao Sun, Annan Deng, Minglun Gong, and
Li Cheng. Action2motion: Conditioned generation of 3d human motions. In Proceedings of the 28th ACM
International Conference on Multimedia (MM ’20), 2020. 6

[9] Félix G. Harvey, Mike Yurick, Derek Nowrouzezahrai, and Christopher Pal. Robust motion in-betweening.
ACM Trans. Graph., 39(4), jul 2020. 3, 8

[10] Gustav Eje Henter, Simon Alexanderson, and Jonas Beskow. Moglow: Probabilistic and controllable
motion synthesis using normalising flows. ACM Trans. Graph., 39(6), nov 2020. 1, 3, 9

[11] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–1780,
nov 1997. 3

[12] Daniel Holden, Oussama Kanoun, Maksym Perepichka, and Tiberiu Popa. Learned motion matching.
ACM Trans. Graph., 39(4):53:1–53:12, July 2020. 3

10

[13] Daniel Holden, Taku Komura, and Jun Saito. Phase-functioned neu-ral networks for character control.
ACM Trans. Graph, 36, 2017. 3

[14] Daniel Holden, Jun Saito, and Taku Komura. A deep learning framework for character motion synthesis
and editing. ACM Trans. Graph., 35(4):1–11, July 2016. 3

[15] Daniel Holden, Jun Saito, Taku Komura, and Thomas Joyce. Learning motion manifolds with convolutional
autoencoders. In SIGGRAPH Asia 2015 Technical Briefs, number Article 18 in SA ’15, pages 1–4, New
York, NY, USA, November 2015. Association for Computing Machinery. 3

[16] Boyan Jiang, Yinda Zhang, Xingkui Wei, Xiangyang Xue, and Yanwei Fu. Learning compositional
representation for 4d captures with neural ode. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5340–5350, 2021. 2

[17] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019. 10

[18] Manuel Kaufmann, Emre Aksan, Jie Song, Fabrizio Pece, Remo Ziegler, and Otmar Hilliges. Convolutional
autoencoders for human motion infilling. In 2020 International Conference on 3D Vision (3DV), pages
918–927. IEEE, 2020. 3

[19] Yongjoon Lee, Kevin Wampler, Gilbert Bernstein, Jovan Popović, and Zoran Popović. Motion fields
for interactive character locomotion. In ACM SIGGRAPH Asia 2010 papers, number Article 138 in
SIGGRAPH ASIA ’10, pages 1–8, New York, NY, USA, December 2010. Association for Computing
Machinery. 3

[20] Sergey Levine, Jack M. Wang, Alexis Haraux, Zoran Popović, and Vladlen Koltun. Continuous character
control with low-dimensional embeddings. ACM Trans. Graph., 31(4), July 2012. 3

[21] Jiaman Li, Ruben Villegas, Duygu Ceylan, Jimei Yang, Zhengfei Kuang, Hao Li, and Yajie Zhao. Task-
generic hierarchical human motion prior using vaes. 2021. 2, 3, 4, 7, 8, 9

[22] Jiaman Li, Yihang Yin, Hang Chu, Yi Zhou, Tingwu Wang, Sanja Fidler, and Hao Li. Learning to generate
diverse dance motions with transformer. arXiv preprint arXiv:2008.08171, 2020. 2

[23] Ruilong Li, Shan Yang, David A. Ross, and Angjoo Kanazawa. Ai choreographer: Music conditioned 3d
dance generation with aist++, 2021. 8

[24] Tianye Li, Mira Slavcheva, M. Zollhöfer, S. Green, Christoph Lassner, Changil Kim, Tanner Schmidt,
S. Lovegrove, M. Goesele, R. Newcombe, and Z. Lv. Neural 3d video synthesis from multi-view video.
2022. 3

[25] Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel Van De Panne. Character controllers using motion
VAEs. ACM Trans. Graph., 39(4):40:1–40:12, July 2020. 1, 3, 6

[26] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black. SMPL: A
skinned multi-person linear model. ACM Trans. Graphics (Proc. SIGGRAPH Asia), 34(6):248:1–248:16,
October 2015. 8

[27] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and Michael J. Black. AMASS:
Archive of motion capture as surface shapes. In International Conference on Computer Vision, pages
5442–5451, October 2019. 5

[28] Wei Mao, Miaomiao Liu, and Mathieu Salzmann. History repeats itself: Human motion prediction via
motion attention. In European Conference on Computer Vision, pages 474–489. Springer, 2020. 2

[29] Julieta Martinez, Michael J Black, and Javier Romero. On human motion prediction using recurrent neural
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
2891–2900, 2017. 2

[30] Marko Mihajlovic, Shunsuke Saito, Aayush Bansal, Michael Zollhoefer, and Siyu Tang. COAP: Com-
positional articulated occupancy of people. In Proceedings IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), June 2022. 10

[31] Marko Mihajlovic, Yan Zhang, Michael J Black, and Siyu Tang. LEAP: Learning articulated occupancy of
people. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 2021. 10

[32] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020. 1, 3, 4, 6

[33] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Occupancy flow: 4d recon-
struction by learning particle dynamics. In Proc. of the IEEE International Conf. on Computer Vision
(ICCV), 2019. 3

[34] Dario Pavllo, David Grangier, and Michael Auli. Quaternet: A quaternion-based recurrent model for
human motion. In British Machine Vision Conference (BMVC), 2018. 1, 4

11

[35] Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter Abbeel, and Sergey Levine. Sfv: Reinforcement
learning of physical skills from videos. ACM Transactions On Graphics (TOG), 37(6):1–14, 2018. 1

[36] Mathis Petrovich, Michael J. Black, and Gül Varol. Action-conditioned 3D human motion synthesis with
transformer VAE. In International Conference on Computer Vision (ICCV), pages 10985–10995, October
2021. 2, 6

[37] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural radiance
fields for dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10318–10327, 2021. 3

[38] Davis Rempe, Tolga Birdal, Aaron Hertzmann, Jimei Yang, Srinath Sridhar, and Leonidas J. Guibas.
Humor: 3d human motion model for robust pose estimation. In International Conference on Computer
Vision (ICCV), 2021. 3, 5, 7, 8

[39] Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wetzstein.
Implicit neural representations with periodic activation functions. In Proc. NeurIPS, 2020. 3

[40] Sebastian Starke, He Zhang, Taku Komura, and Jun Saito. Neural state machine for character-scene
interactions. ACM Trans. Graph., 38(6):1–14, November 2019. 3

[41] Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Zaman. Local motion phases for learning multi-
contact character movements. ACM Trans. Graph., 39(4):54:1–54:13, July 2020.

[42] Sebastian Starke, Yiwei Zhao, Fabio Zinno, and Taku Komura. Neural animation layering for synthesizing
martial arts movements. ACM Trans. Graph., 40(4):1–16, July 2021. 3

[43] Ruben Villegas, Jimei Yang, Duygu Ceylan, and Honglak Lee. Neural kinematic networks for unsupervised
motion retargetting. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2018. 4

[44] Jack M Wang, David J Fleet, and Aaron Hertzmann. Gaussian process dynamical models for human
motion. IEEE Trans. Pattern Anal. Mach. Intell., 30(2):283–298, February 2008. 2

[45] Ye Yuan and Kris Kitani. Dlow: Diversifying latent flows for diverse human motion prediction. In
European Conference on Computer Vision, pages 346–364. Springer, 2020. 3, 6

[46] M Ersin Yumer and Niloy J Mitra. Spectral style transfer for human motion between independent actions.
ACM Transactions on Graphics (TOG), 35(4):1–8, 2016. 7

[47] He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. Mode-adaptive neural networks for quadruped
motion control. ACM Trans. Graph., 37(4), jul 2018. 3, 5, 6

[48] Siwei Zhang, Yan Zhang, Federica Bogo, Marc Pollefeys, and Siyu Tang. Learning motion priors for 4d
human body capture in 3d scenes. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 11343–11353, 2021. 3

[49] Yan Zhang, Michael J Black, and Siyu Tang. We are more than our joints: Predicting how 3d bodies
move. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
3372–3382, 2021. 2

[50] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. On the continuity of rotation representa-
tions in neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5745–5753, 2019. 3, 4

[51] Yi Zhou, Jingwan Lu, Connelly Barnes, Jimei Yang, Sitao Xiang, et al. Generative tweening: Long-term
inbetweening of 3d human motions. arXiv preprint arXiv:2005.08891, 2020. 3, 4

12

NeMF: Neural Motion Fields for Kinematic Animation
– Supplementary Material –

Chengan He
Yale University

chengan.he@yale.edu

Jun Saito
Adobe Research

jsaito@adobe.com

James Zachary
Adobe Research

zachary@adobe.com

Holly Rushmeier
Yale University

holly.rushmeier@yale.edu

Yi Zhou
Adobe Research

yizho@adobe.com

Contents

1 Method Details 1

1.1 Global Motion Predictor . 1

1.2 Network Architecture . 2

2 Experiment Details 3

2.1 Datasets . 3

2.2 Training & Optimization . 4

2.3 Motion Reconstruction & Synthesis . 4

2.4 Qualitative Metrics . 4

2.5 Baselines . 5

3 Additional Results 5

3.1 Motion Reconstruction . 5

3.2 Motion Composition . 6

3.3 Latent Space Interpolation . 6

3.4 Time Translation in Latent Space . 6

1 Method Details

1.1 Global Motion Predictor

Given the fact that the character’s global translation is conditioned on its local poses, similar to [14,
33], we design a fully convolutional network to generate the global translation r of the root joint
based on the local joint positions, velocities, rotations, and angular velocities as inputs. To eliminate
ambiguities in the output, instead of generating the root position directly, we try to predict its velocity

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

ṙ, which can be integrated using the forward Euler method to compute r:

rt+1 = rt + ṙt∆t = r1 +
t∑

i=1

ṙi∆t. (1)

However, cumulative errors are inevitable during the integration process, and this becomes more
pronounced in the upward direction, where the character gradually moves into the air or under the
ground. To avoid this phenomenon, we directly predict the height rh of the root joint, which is
reasonable since it lies in a region bounded by the height of the character. Then, we measure the
differences on the generated velocities and integrated positions as the loss function to minimize:

L = Lvel + Ltrans (2)

Lvel =
T∑

t=1

∥ṙt − ˆ̇rt∥1, Ltrans =
T∑

t=1

∥rt − r̂t∥1. (3)

A Note on An Alternative Integrated Model. A simpler design choice is to predict the global
translation, orientation and local motion all at once, and we call it an integrated model. However,
in our experiments, we observed that this integrated model cannot fully decouple local and global
motion, which is more evident when applied in tasks like motion in-betweening. As shown in Figure 1
and our supplemental video, the integrated model tends to generate static local poses with global
translation for motion in the interval, thus causing sliding artifacts. While in the separate model, it
doesn’t have this artifact since this model explicitly decouples local and global motion.

Separate Model Integrated Model

Figure 1: Comparison between separate model and integrated model on motion in-betweening. The
two yellow poses are ground truth and the cyan poses are generated results in the interval.

A Note on Our Single-Motion NeMF Model. When training our single-motion NeMF model,
we train the MLP to fit both the local and global motion. Therefore, its loss function contains terms
both from Equation 5 of our main paper and Equation 2 above. While for our generative model,
we observe some artifacts as illustrated in Figure 1 and choose to train a standalone global motion
predictor to handle the global motion. Therefore, we drop the loss terms related to global motion
when training our VAE.

1.2 Network Architecture

Motion Encoders. We introduce two separate motion encoders to parameterize the latent space
of local motion and root orientation respectively. To encode local motion, we adopt the Skeleton
Convolution and Skeleton Pooling layers proposed in [1] to build a residual block with PReLU
activations [11] and group normalization [31]. The motion encoder contains 4 layers of these skeleton
convolution residual blocks with kernel size 4 to extract latent features from local pose parameters,
which are followed by 2 fully-connected layers to obtain the mean and variance of zl in 1024
dimensions. As for root orientation, its residual block is built on 1D convolution and 1D average
pooling layers with PReLU activations, and its encoder also contains 4 layers of residual blocks with
kernel size 4 to gradually upscale the root orientation in R6 to latent features in 128, 256, 512, and
512 dimensions. The fully-connected layers then map the latent features to the mean and variance of
zg in 256 dimensions.

2

MLP Decoder. Similar to [22], we build an MLP to predict local pose parameters and root
orientation based on latent variables and temporal coordinates with positional encoding. The MLP
contains 11 fully-connected layers with ReLU activations and layer normalization [3]. Each hidden
layer has the output size 1024, while a skip connection is introduced in each layer of the MLP to
emphasize the importance of the input and to help prevent posterior collapse [16].

Global Motion Predictor. Our global motion predictor has a similar architecture as our motion
encoder, where 3 layers of skeleton convolution residual blocks with kernel size 15 are applied to
to extract latent features from the local pose parameters. These latent features are then mapped to
root velocity and root height with 4 additional residual blocks composed of 1D convolution and 1D
average pooling layers with kernel size 15.

2 Experiment Details

2.1 Datasets

We train our model on the AMASS dataset1 [19] for human motion, which is a motion capture
database that aggregates mocap data from multiple datasets and normalizes them into a uniform
format. We then leverage the data processing scripts provided by HuMoR [25] to filter some outlier
data and unify their frame rates to 30 fps. Here, we plot the duration distribution of the processed
AMASS data in Figure 2 and collect some detailed statistics in Table 1.

0

2000

4000
total

0
500

1000

female

0 50 100 150 200
0

1000

2000

male

0.0 0.2 0.4 0.6 0.8 1.0
Duration (second)

0.0

0.2

0.4

0.6

0.8

1.0

Co
un

ts

AMASS Data Duration Distribution

Figure 2: Duration distribution of AMASS data.

From the statistics we collect, the duration of AMASS data has a large variance while most of them
are between 0 and 50s. To be more specific, only more than 50.98% of the data are longer than 5s.
Therefore, to fully utilize the AMASS data, we choose to chop the sequences into clips with 128
frames (4.3s) and set the batch size to be 16 throughout experiments. Then we split these processed

1For the license of AMASS, please check: https://amass.is.tue.mpg.de/license.html.

3

data into training, validation and testing sets, where the training set contains data from CMU [29], MPI
Limits [2], TotalCapture [28], Eyes Japan [18], KIT [20], BMLrub [27], BMLmovi [8], EKUT [20],
ACCAD [6], BMLhandball [12], DanceDB [5], DFaust [4], and SSM [19], the validation set contains
data from MPI HDM05 [23], SFU [30], and MPI Mosh [17], and the testing set contains data from
HumanEva [26] and Transitions [19]. This split results in 11, 642 sequences in the training set, 1, 668
sequences in the validation set and 164 sequences in the testing set, roughly 20 hours in total for use.

Table 1: Detailed statistics collected from the AMASS data.

AMASS Data Statistics
Total motion sequences 11, 831
Total Duration 119, 661.40s
Minimal Duration 0.97s
Maximal Duration 224.57s
Average Duration 10.11s
Sequences longer than 5s 6, 031 (50.98%)
Sequences longer than 10s 2, 739 (23.15%)
Male Data 7, 400 (Duration: 73, 989.10s)
Female Data 4, 431 (Duration: 45, 672.30s)

We additionally train our model for
the reconstruction experiments on
a quadruped motion dataset [32],
which contains 30 minutes of dog
motion capture. Similar to [13], we
manually filter those clips on uneven
terrain and the remaining data are all
in 60 fps with various lengths from
155 to 13, 399 frames.

2.2 Training & Optimization

We train our model and conduct all
the experiments on a cluster with 8
Intel® Xeon® Gold 6136 CPUs @
3.00GHz, 64GB memory, and 2 NVIDIA Tesla V100 GPUs. Our code is implemented with Python
3.9.7 and PyTorch 1.9.0.

Training. We employ Adam optimizer throughout the training for all NeMF architectures with
the learning rate of 0.0001. We train our single-motion NeMF for 500 iterations to fit a 32-frame
sequence, and scale the number of iterations proportionally as the sequence length increases to make
sure that our model is sufficiently trained for each length of sequences. As for our generative NeMF
and global motion predictor, we train their architectures for 1, 000 epochs with weight decay 0.0001.

Test-Time Optimization. Our test-time optimization utilizes Adam with the initial learning rate of
0.1. In all experiments, our method converges within 600 iterations with proper initialization, and we
decay the learning rate to 0.07 and 0.049 at iteration 200 and 400, respectively.

Hyperparameters. In all of our experiments, we set the weights λrot to 1.0, λori to 1.0, and λpos to
10.0. In training our generative NeMF, we initially set λKL to 1e−5. To combat posterior collapse,
we adopt the cyclical annealing schedule [7] to linearly anneal λKL from 1e−7 to its full value every
50 epochs. For the energy functions formulated during test-time optimization, we set the weights
λtrans to 1.0, λsim to 0.5, λtraj to 1.0, and λangle to 1.0.

2.3 Motion Reconstruction & Synthesis

In the ablation study and comparison, we evaluate both the reconstruction and synthesis capability
of our generative NeMF. For motion reconstruction, we use the trained network to directly infer the
164 samples in the testing set and compute some deterministic metrics to measure the reconstruction
errors. For motion synthesis, we generate 400 samples through latent space sampling and introduce
three additional metrics to measure the quality of motion.

2.4 Qualitative Metrics

In our experiments, we employ the following three metrics to measure the motion characteristics that
reconstruction errors cannot capture, namely Fréchet Inception Distance (FID), diversity (Diversity)
and foot skating (FS).

Fréchet Inception Distance (FID). FID is a statistical metric which has been widely used for
measuring the image quality, while Guo et al. [9] and Petrovich et al. [24] have transferred it to
the motion domain and employ it in tasks such as action recognition. To evaluate FID, we use a

4

pre-trained feature extractor to extract motion features from real and generated motions, then the FID
is computed from the distribution of these feature vectors.

Diversity. Diversity was first introduced by Guo et al. [9] to measure the variance of generated
motions. To evaluate diversity, we randomly split all generated data into two subsets with equal size.
Feature vectors are then extracted from them respectively, and diversity is computed as the mean
Euclidean distance between these feature vectors.

Foot Skating (FS). To measure the foot skating artifact, we use the metric proposed in [16, 32]. To
be specific, this metric measures the accumulated drift on the ankle and toe joints when their height h
is within a certain threshold H . Their velocity is first projected onto the horizontal plane to compute
the magnitude v, which is further weighted with the formula s = v(2 − 2

h
H). In our experiments,

we set H according to the values provided by HuMoR [25], which are 4cm for toe joints and 8cm
for ankle joints. This parameter setting leads to an average foot skate of 0.512cm per frame in the
ground truth data.

To build the feature extractor for FID and diversity, we train an auto-encoder that maps the input
motion parameters to feature vectors. The auto-encoder has a similar architecture as our VAE, except
that it takes both local and global motion as input and the fully-connected layer outputs latent vectors
directly instead of their mean and variance. Similar to [9, 24], we randomly pick 100 samples from
the generated data to evaluate these plausible metrics in each iteration, and perform 20 iterations with
different random seeds. We then report the mean value of these metrics in our tables.

2.5 Baselines

HM-VAE [14]. We use the pre-trained HM-VAE model released by the authors. The model was
trained on the AMASS dataset with a sequence length of 64. To accommodate longer sequences, we
use the concatenation method in their open-source code2 to connect each sub-sequence.

HuMoR [25]. We use the pre-trained HuMoR model released by the authors3.

Robust Motion In-betweening (RMI) [10]. We choose an open-source implementation of RMI4

since Ubisoft does not release their official code. We modified this unofficial implementation and
trained it on the AMASS dataset to fit our experiment setup.

3 Additional Results

3.1 Motion Reconstruction

In Figure 3 we show our reconstruction result on the quadruped motion. This sequence contains
4, 336 frames at 60 fps (73s), which takes 8, 000 iterations to converge. From the visualization in
Figure 3 and our supplemental video, our predicted motion is almost identical to the ground truth.

Figure 3: Quadruped motions generated from single-motion NeMF, where the cyan skeleton indicates
our generated result and the yellow skeleton is the ground truth motion.

2https://github.com/lijiaman/hm-vae
3https://github.com/davrempe/humor
4https://github.com/xjwxjw/Pytorch-Robust-Motion-In-betweening

5

3.2 Motion Composition

Since we disentangle the latent space for local motion and root orientation, we can create interesting
motion editing results as in Figure 4, where we cancel the spinning motion of a pirouette jump by
assigning different zg to the same zl.

zl(jumping) + zg(spinning) zl(jumping) + zg(no spinning)

Figure 4: Orientation editing by assigning different zg to the same zl.

3.3 Latent Space Interpolation

To examine the smoothness of the latent space and see whether our model can blend different styles
of motion at the sequence level, we linearly interpolate z from two existing motion sequences and
infer the novel ones as shown in Figure 5.

Figure 5: Latent space interpolation.

3.4 Time Translation in Latent Space

As a motion prior, different motion clips will be mapped to different positions in the latent space.
Therefore, it would be interesting to examine the latent patterns formed by those clips which share a
large portion of overlap while containing some temporal offsets.

We then set up an experiment by first picking 3 different sequences from AIST++ [15], each containing
about 200 to 300 frames. For each sequence, we use a sliding window with an offset of 10 to obtain
clips with 118-frame overlap, and then encode these clips with our encoder. The latent variables
are projected to 3D with UMAP [21] and visualized in Figure 6. In the cases we test, the clips with
overlapping frames are mapped to nearby positions and even form some interesting patterns, thus
suggesting that they maintain certain connection in the latent space.

References
[1] Kfir Aberman, Peizhuo Li, Sorkine-Hornung Olga, Dani Lischinski, Daniel Cohen-Or, and Baoquan Chen.

Skeleton-aware networks for deep motion retargeting. ACM Transactions on Graphics (TOG), 39(4):62,
2020. 2

6

6.5
7.0

7.5
8.0

8.5
9.0

9.5 0.5

1.0

1.5

2.0
2.5

3.0
3.5

8.0

8.5

9.0

9.5

10.0

10.5

Latent Distribution of zl

2.0
2.5

3.0
3.5

4.0
4.5

4.5
5.0

5.5
6.0

6.5
7.0

7.5

6.5

7.0

7.5

8.0

8.5

9.0

Latent Distribution of zg

Figure 6: Latent distribution of clips with time translation. Different colors refer to different AIST++
sequences.

[2] Ijaz Akhter and Michael J. Black. Pose-conditioned joint angle limits for 3D human pose reconstruction.
In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2015, June 2015. 4

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016. 3

[4] Federica Bogo, Javier Romero, Gerard Pons-Moll, and Michael J. Black. Dynamic FAUST: Registering
human bodies in motion. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), July 2017.
4

[5] DanceDB. Dance motion capture database. 4

[6] Advanced Computing Center for the Arts and Design. Accad mocap dataset. 4

[7] Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao, Asli Celikyilmaz, and Lawrence Carin. Cyclical
annealing schedule: A simple approach to mitigating kl vanishing. arXiv preprint arXiv:1903.10145, 2019.
4

[8] Saeed Ghorbani, Kimia Mahdaviani, Anne Thaler, Konrad Kording, Douglas James Cook, Gunnar
Blohm, and Nikolaus F Troje. Movi: A large multipurpose motion and video dataset. arXiv preprint
arXiv:2003.01888, 2020. 4

[9] Chuan Guo, Xinxin Zuo, Sen Wang, Shihao Zou, Qingyao Sun, Annan Deng, Minglun Gong, and
Li Cheng. Action2motion: Conditioned generation of 3d human motions. In Proceedings of the 28th ACM
International Conference on Multimedia (MM ’20), 2020. 4, 5

[10] Félix G. Harvey, Mike Yurick, Derek Nowrouzezahrai, and Christopher Pal. Robust motion in-betweening.
ACM Trans. Graph., 39(4), jul 2020. 5

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. CoRR, abs/1502.01852, 2015. 2

[12] Fabian Helm, Nikolaus F Troje, and Jörn Munzert. Motion database of disguised and non-disguised team
handball penalty throws by novice and expert performers. Data in brief, 15:981–986, 2017. 4

[13] Gustav Eje Henter, Simon Alexanderson, and Jonas Beskow. Moglow: Probabilistic and controllable
motion synthesis using normalising flows. ACM Trans. Graph., 39(6), nov 2020. 4

[14] Jiaman Li, Ruben Villegas, Duygu Ceylan, Jimei Yang, Zhengfei Kuang, Hao Li, and Yajie Zhao. Task-
generic hierarchical human motion prior using vaes. 2021. 1, 5

[15] Ruilong Li, Shan Yang, David A. Ross, and Angjoo Kanazawa. Ai choreographer: Music conditioned 3d
dance generation with aist++, 2021. 6

[16] Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel Van De Panne. Character controllers using motion
VAEs. ACM Trans. Graph., 39(4):40:1–40:12, July 2020. 3, 5

[17] Matthew M. Loper, Naureen Mahmood, and Michael J. Black. MoSh: Motion and shape capture from
sparse markers. ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 33(6):220:1–220:13, November
2014. 4

[18] Eyes JAPAN Co. Ltd. Eyes japan mocap dataset. 4

[19] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and Michael J. Black. AMASS:
Archive of motion capture as surface shapes. In International Conference on Computer Vision, pages
5442–5451, October 2019. 3, 4

7

[20] Christian Mandery, Ömer Terlemez, Martin Do, Nikolaus Vahrenkamp, and Tamim Asfour. The kit
whole-body human motion database. In International Conference on Advanced Robotics (ICAR), pages
329–336, 2015. 4

[21] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Grossberger. Umap: Uniform manifold approxi-
mation and projection. The Journal of Open Source Software, 3(29):861, 2018. 6

[22] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020. 3

[23] Meinard Müller, Tido Röder, Michael Clausen, Bernhard Eberhardt, Björn Krüger, and Andreas Weber.
Documentation mocap database hdm05. 2007. 4

[24] Mathis Petrovich, Michael J. Black, and Gül Varol. Action-conditioned 3D human motion synthesis with
transformer VAE. In International Conference on Computer Vision (ICCV), pages 10985–10995, October
2021. 4, 5

[25] Davis Rempe, Tolga Birdal, Aaron Hertzmann, Jimei Yang, Srinath Sridhar, and Leonidas J. Guibas.
Humor: 3d human motion model for robust pose estimation. In International Conference on Computer
Vision (ICCV), 2021. 3, 5

[26] L. Sigal, A. Balan, and M. J. Black. HumanEva: Synchronized video and motion capture dataset and
baseline algorithm for evaluation of articulated human motion. International Journal of Computer Vision,
87(1):4–27, March 2010. 4

[27] Nikolaus F Troje. Decomposing biological motion: A framework for analysis and synthesis of human gait
patterns. Journal of vision, 2(5):2–2, 2002. 4

[28] Matt Trumble, Andrew Gilbert, Charles Malleson, Adrian Hilton, and John Collomosse. Total capture:
3d human pose estimation fusing video and inertial sensors. In 2017 British Machine Vision Conference
(BMVC), 2017. 4

[29] Carnegie Mellon University. Cmu graphics lab motion capture database. 4

[30] Simon Fraser University and National University of Singapore. Sfu motion capture database. 4

[31] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on computer
vision (ECCV), pages 3–19, 2018. 2

[32] He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. Mode-adaptive neural networks for quadruped
motion control. ACM Trans. Graph., 37(4), jul 2018. 4, 5

[33] Yi Zhou, Jingwan Lu, Connelly Barnes, Jimei Yang, Sitao Xiang, et al. Generative tweening: Long-term
inbetweening of 3d human motions. arXiv preprint arXiv:2005.08891, 2020. 1

8

