

Testing Spatial Patterns for Acquiring Shape and Subsurface Scattering Properties

Yitzchak Lockerman, Samuel Brenner, Joseph Lanzone, Alexander Doronin, Holly Rushmeier

Our Goal

 In particular, we are interested in objects with strong subsurface scattering.

Computer

Group

Yale Graphics

Our Goal

• We focus on low cost solutions, using purely consumer/hobbyist electronics.

Overview

Computer Yale Graphics

4

Group

- 1. Past Work
- 2. Our Patterns
- 3. Our System
- 4. Results
- 5. Future Work

Overview

Computer Yale Graphics

5

Group

- 2. Our Patterns
- 3. Our System
- 4. Results
- 5. Future Work

- Consider the image produced when an object is illuminated by a light source
- The transmitted light is a combination of directly reflected light and light that underwent subsurface scattering

- Consider the image produced when an object is illuminated by a light source
- The transmitted light is a combination of directly reflected light and light that underwent subsurface scattering

- Consider the image produced when an object is illuminated by a light source
- The transmitted light is a combination of directly reflected light and light that underwent subsurface scattering

Computer

Group

Yale Graphics

Computer

Group

Yale Graphics

Computer

Group

Yale Graphics

• By using different light patterns, we can extract the subsurface component.

Direct/Indirect Separation

2/15/2016

Direct:

Indirect:

From: "Experiments with a low-cost system for computer graphics material model acquisition" Rushmeier et. al.

13

Computer Yale Graphics Group

Binary Patterns

- Binary patterns are often used to find projector camera correspondence.
- Each location is unequally encoded by a binary code.

Time

Location

Binary Patterns

- Binary patterns are often used to find projector camera correspondence.
- Each location is unequally encoded by a binary code.

Location

Overview

Computer Yale Graphics

16

Group

1. Past Work

2. Our Patterns

- 3. Our System
- 4. Results
- 5. Future Work

The problem

 In the presents of subsurface scattering, patterns can get "blurred"

Region with strong subsurface scattering

Region with weaker subsurface scattering

The problem

 In the presents of subsurface scattering, patterns can get "blurred"

Region with strong subsurface scattering

Region with weaker subsurface scattering

2/15/2016

Primary/Secondary Patterns

 We realized that we can treat the initial pattern as a light source, then use Nayar et al's method to decompose that pattern

Computer

Graphics

Group

Yal

2/16/2016

Primary/Secondary Patterns

 We realized that we can treat the initial pattern as a light source, then use Nayar et al's method to decompose that pattern

Computer

Graphics

Group

Yal

2/15/2016

Primary/Secondary Patterns

Yale Graphics Group

- This is equivalent to subdividing the initial pattern into a number of new composited patterns.
- For clarity, we call the initial pattern the "primary pattern" and the composed pattern the "secondary pattern"

Overview

Computer Yale Graphics

22

Group

- 1. Past Work
- 2. Our Patterns
- 3. Our System
- 4. Results
- 5. Future Work

Our system

Our system includes:

- 1. Canon EOS Rebel T5 (\$300)
- 2. AAXA KP-100-02 P2 Jr Pico projector (\$200)
- 3. Raspberry Pi 2 (\$45)
- 4. Tripod/stereo rig/wire management

Our system

- We have three camera/projector pairs.
- That is, we have a total of 6 "view points".

Overview

Computer Yale Graphics

25

Group

- 1. Past Work
- 2. Our Patterns
- 3. Our System
- 4. Results
- 5. Future Work

Direct indirect separation

2/15/2016

Computer Yale Graphics Group

2/15/2016

Our separation of patterns

• By separating the direct from the indirect the patterns become more apparent.

Full Image

2/16/2016

Our separation of patterns

• By separating the direct from the indirect the patterns become more apparent.

Direct Scattering

2/16/2016

Our separation of patterns

• By separating the direct from the indirect the patterns become more apparent.

Indirect Scattering

Point Cloud

Illuminated Point Cloud

- To the best of our knowledge, this is the only system that can produce point clouds with lighting from multiple illumination directions.
- This illumination can be separated direct and indirect components

2/15/2016

Comparison of Materials

32

 We can compare the scattering properties we obtain to rendered materials to estimate parameters.

Overview

Computer Yale Graphics

33

Group

- 1. Past Work
- 2. Our Patterns
- 3. Our System
- 4. Results
- 5. Future Work

Computer

Graphics

Group

Yal

34

• We are looking at methods to directly obtain the BSSRDF from our results.

Acknowledgements

- This work was funded by NSF grants IIS-1064412 and IIS- 1218515.
- The computational resources of the Yale Computer Science Cloud were used in this work.