
Pacific Graphics (2022) Short Paper
N. Umetani, E. Vouga, and C. Wojtan (Editors)

Learning a Style Space for Interactive Line Drawing Synthesis from
Animated 3D Models

Zeyu Wang1 , Tuanfeng Y. Wang2 and Julie Dorsey1

1Yale University 2Adobe Research

Abstract
Most non-photorealistic rendering (NPR) methods for line drawing synthesis operate on a static shape. They are not tailored
to process animated 3D models due to extensive per-frame parameter tuning needed to achieve the intended look and natural
transition. This paper introduces a framework for interactive line drawing synthesis from animated 3D models based on a
learned style space for drawing representation and interpolation. We refer to style as the relationship between stroke placement
in a line drawing and its corresponding geometric properties. Starting from a given sequence of an animated 3D character, a
user creates drawings for a set of keyframes. Our system embeds the raster drawings into a latent style space after they are
disentangled from the underlying geometry. By traversing the latent space, our system enables a smooth transition between
the input keyframes. The user may also edit, add, or remove the keyframes interactively, similar to a typical keyframe-based
workflow. We implement our system with deep neural networks trained on synthetic line drawings produced by a combination
of NPR methods. Our drawing-specific supervision and optimization-based embedding mechanism allow generalization from
NPR line drawings to user-created drawings during run time. Experiments show that our approach generates high-quality line
drawing animations while allowing interactive control of the drawing style across frames.

CCS Concepts
• Computing methodologies → Non-photorealistic rendering; Animation; Learning latent representations;

1. Introduction

The gap between what humans and computers draw is one of the
main reasons why artists are reluctant to employ NPR in their work-
flow. Such generative techniques could have served as a collabora-
tive and efficient tool if they allowed for intuitive user control rather
than dictating the output. For example, creating line drawings for
animated shapes is tedious and hard to control, which traditionally
relies on the heavy manual labor of tweeners, i.e., artists who create
intermediate frames between keyframes. In this paper, we investi-
gate how to efficiently produce a line drawing animation given a
3D sequence while allowing interactive editing of the drawings in-
spired by the modern 3D-based workflow. Our key observation in
enabling this interactive editing pipeline is to interpret a drawing as
a style for depicting the underlying geometry. Here a style captures
the relationship between stroke placement and geometric properties
of the underlying surface. By adopting a keyframe-based frame-
work, we seek to develop a system that facilitates the synthesis of
line drawing animations with interactive editing by propagating the
style of drawings at several keyframes to all other frames.

There are numerous ways to create a drawing. Even for the same
shape, people with different levels of experience for various pur-
poses can employ distinct styles. In this work, our goal is to build
an efficient animation authoring tool for line drawings with fixed

stroke color and width. This is a commonly studied type of draw-
ing in graphics literature [CGL∗08, LLM∗19, LNHK20] and what
most people draw in practice. We leave the handling of other artistic
choices such as hatching and stippling to future work.

Extracting line drawings from 3D geometry has been discussed
under the scope of non-photorealistic rendering (NPR) [DFRS03,
OBS04,JDA07]. However, common parameter-controlled NPR ap-
proaches fall short in a creative workflow. There may not exist a
set of parameters that can generate a desired line drawing. Also,
smooth transition between keyframes may not be possible since the
parameters often change at target keyframes and discrete parame-
ters are difficult to interpolate. Most NPR methods only operate
on local features, while artists usually have context-dependent and
more sophisticated treatment in their drawing.

In our system, we directly allow the user to create line draw-
ings at a few keyframes. With known 3D geometry at each frame,
we extract a latent style code that faithfully represents the user’s
drawings at the keyframes. Our system can then synthesize line
drawings at the inbetween frames from the underlying geometry by
interpolating the latent style codes between the keyframes. Tech-
nically, with a given camera, we represent the geometry at each
frame as a set of 2D geometric signals, e.g., normal maps, depth
maps, and surface curvatures. We adopt a StyleGAN-based gener-

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://orcid.org/0000-0001-5374-6330
https://orcid.org/0000-0002-8180-4988
https://orcid.org/0000-0003-2495-4979

Wang et al. / Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models

ator [KLA∗20] to produce a line drawing from a 2D feature map
learned from the geometric signals and modulated by a latent style
code at each frame. We train the network with synthetic line draw-
ings generated by different NPR methods. At run time, we employ
an optimization-based GAN inversion technique to map the input
drawings into the latent style space.

To summarize, this paper makes the following contributions:

• A pipeline for interactive line drawing synthesis from animated
3D models, which allows users to control the synthesized style
using their drawings at keyframes.

• Novel loss terms specifically designed to facilitate interpolation
and style/geometry disentanglement in for line drawings.

• An optimization-based embedding strategy that makes the net-
work trained on synthetic NPR output generalize to user-created
line drawings at run time.

2. Related Work

Non-photorealistic rendering. NPR techniques attempt to create
artistic styles in contrast to photorealism. These methods usually
take a 3D model as input and extract lines by examining differential
properties such as surface curvatures and their derivatives. Widely
used ones include suggestive contours [DFRS03], ridges and val-
leys [OBS04], and apparent ridges [JDA07]. Recent deep learning-
based methods can produce more stylistic results [LFHK21]. These
results are believed to resemble drawing, but studies have shown
that there is still a significant gap between what people and ma-
chines draw [WQF∗21]. In particular, it is difficult to use NPR
methods to produce an intended output due to the lack of intuitive
control and interpolation space. This becomes more challenging for
animation, which involves varying geometry over time. Animators
and tweeners have to draw every single frame to create a draw-
ing animation, with little help from digital tools. Our work aims
to reduce manual labor in line drawing animation synthesis while
allowing intuitive control of the generator by drawing at keyframes.

Sketch animation. Sketch animation can date back to rotoscop-
ing [Fle05], where animators trace over movie images projected
onto a glass panel frame by frame. Digital technologies have pro-
vided sketch animation with many new possibilities, such as sys-
tems for animating vector graphics [WNS∗10, CAC22], propagat-
ing artistic styles [BCK∗13, XWSY15], and deforming segments
driven by video and physical simulation [WLP∗17, SBF∗18]. In
particular, it is beneficial to bring the 2D and 3D workflows to-
gether for more expressiveness and versatility, such as augment-
ing 2D sketches with 3D motion capture data and converting 2D
sketches to 3D proxies [JSH09, JSMH12]. Inspired by this line
of work, our system attempts to facilitate sketch animation by
synthesizing sketches from a 3D animation sequence in a user-
specified style at keyframes. Users can interactively edit the pre-
dicted sketches and propagate the changes to other frames similar
to a previous workflow for garment animation [WSFM19].

Style-driven image generation and embedding. Generating
rasterized drawings in 2D image space can be categorized as a
sub-topic of image synthesis with control signals. A notable tech-
nique is StyleGAN [KLA19], which maps a high dimensional noise
into a latent space and apply the learned latent feature as style

Figure 1: Our network architecture. GeoNet EG learns a 2D geo-
metric feature g for the underlying geometry Ma captured at frame
a. StyleNet ES encodes a drawing Ia at frame a or one with the same
style Ib at any frame b into a 1D latent style code z. A StyleGAN-
based generator G [KLA∗20] is initialized by g and modulated by
z at each layer. This pipeline outputs a drawing I′a generated by G.

to modulate the weights of a convolutional neural network-based
generator. StyleGAN and its successors have achieved state-of-
the-art performance in high-quality image synthesis. Based on the
powerful generator, using a learned 2D feature map instead of a
constant tensor allows explicit control over the spatial structure
of a generated image [SGLT21]. Inspired by these previous ef-
forts, we interpret a line drawing as a 3D shape presented with
a specific style. We adopt a StyleGAN-based generator and ini-
tialize it with a 2D geometric feature map for geometry/style dis-
entanglement. The inversion of generation is also useful to em-
bed an input image into the latent space. This can be done by
projecting the image into latent space via a neural network en-
coder [TEB∗20, TAN∗21, RAP∗21] or optimizing the latent code
to reconstruct the target image [UVL18,AQW19,AQW20]. During
training, our style encoder learns a style code, while during testing,
we adopt optimization-based embedding for better generalization.

3. Methodology

With the given 3D animation sequence, our method addresses two
core issues: 1) represent an line drawing as a latent style code at a
keyframe, and 2) generate high-quality line drawing images with an
interpolated style code for all other frames. This requires us to learn
a latent space to capture the style difference between drawings.
Here style refers to stroke placement on a given 3D geometry, not
stroke appearance like width, color, and texture. Since the underly-
ing geometry is known, we adopt an autoencoder-like framework
to learn the latent space disentangled from geometry (Section 3.1).
We then train our network on a synthetic dataset with customized
loss terms that encourage the network to generate smooth transi-
tions (Section 3.2). At run time, we adopt an optimization-based
GAN inversion process on a user-created line drawing to obtain
its corresponding latent representation. The learned latent space,
the generator, and the keyframe embedding enable an interactive
workflow for line drawing animation synthesis (Section 5).

3.1. Learning a Latent Style Space

We adopt an autoencoder-like framework to learn a latent style code
for an input line drawing, as shown in Figure 1. Specifically, we en-

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Wang et al. / Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models

code the underlying geometry into a 2D feature map via the geom-
etry encoder, EG, and encode the 2D line drawing into a 1D style
code via the encoder, ES. We utilize a StyleGAN-based generator,
G, as our decoder which takes the 2D geometry feature map as in-
put and is modulated by the 1D style code.

Encoding geometry with GeoNet EG. Given a 3D animation
sequence, we first set camera parameters to put the character in
the center of the viewport. We then represent the underlying ge-
ometry at each frame with a set of geometric properties. Specif-
ically, we render 1) shading, N ·V , where N is the normal direc-
tion in the world space and V is the view direction pointing to
the camera; 2) depth map, dep, distance from the surface to the
camera; 3) derivative of the radial curvature, Dκ, used in sugges-
tive contours [DFRS03]; 4) positive first principal curvature κ1
and 5) negative first principal curvature κ2, used in ridges and val-
leys [OBS04]; and 6) view-dependent curvature κt , used in appar-
ent ridges [JDA07], with a resolution of H ×W . Each curvature is
normalized using its 90th percentile. The geometry encoder EG en-
codes the multi-channel map Ma ∈RH×W×6 containing geometric
properties at frame a as a tensor g ∈ RHs×Ws×512:

g = EG(Ma), (1)

where Hs,Ws = H/16,W/16. We implement EG(·) with a set of
convolutional neural networks for efficient 2D feature extraction.

Encoding drawing with StyleNet ES. We represent a line draw-
ing as a single-channel black-and-white image at a resolution of
H ×W . We adopt a convolutional neural network to extract a 1D
vector as style code from the input drawing. We use 1D feature
vectors to represent style instead of using 2D feature maps since
we do not expect to capture any spatial information. Specifically,
starting from a line drawing Ia ∈ RH×W×1 at frame a, we con-
catenate it with the corresponding multi-channel geometric map
Ma ∈ RH×W×6. The combined input is then passed through our
style encoder ES to produce a latent style vector z ∈ R1×1×2048:

z = ES(Ia,Ma). (2)

Note that our training dataset is generated by NPR methods. There-
fore, Ia can be labelled as Ia,x where x refers to a set of NPR pa-
rameters with which the line drawing is generated. We assume the
drawings generated with same NPR parameters should be the same
style, so one property of our StyleNet ES should be:

ES(Ia,x,Ma) = ES(Ib,x,Mb), (3)

where a and b are randomly sampled frames.

StyleGAN-based image generator G. We choose a StyleGAN-
based network as our generator. The original StyleGAN architec-
ture starts from a constant spatial tensor and utilizes a latent noise
vector passed through a mapping network to demodulate interme-
diate layers to control the details of the generated image. Inspired
by Sarkar et al. [SGLT21], our generator G starts from the learned
geometry feature g instead of a constant input. The intermediate
layers are then demodulated by the learned style code z in forward
passing. G outputs a line drawing I′a ∈ RH×W×1 at frame a:

I′a = G(g;z) = G(EG(Ma);z). (4)

Figure 2: A toy example explaining our interpolation and stroke-
ness losses. Given two line drawings I1 and I2, Case 1 shows natu-
ral inbetweening, i.e., gradually growing the stroke from I1 to I2 in
a certain direction. Case 2 and Case 3 present two counterintuitive
examples. In Case 2, the stroke does not follow the minimum path
principle and goes beyond the range of I2. In Case 3, the stroke
grows in fragments instead of growing smoothly in a stable direc-
tion. |It − I1| and |I2 − It | further highlight the differences.

3.2. Learning for Drawing Generation

A typical image-based generator is usually trained to minimize per-
pixel and perceptual differences. In our setup, the generator should
also produce images that 1) look like line drawings rather than nat-
ural images, and 2) behave like real inbetweening across frames.
Specifically, in addition to widely used terms like reconstruction,
perceptual, and adversarial losses, we supervise our network train-
ing with 1) sparsity loss, to remove gray pixels; 2) interpolation
loss, to encourage the generated image to transition smoothly be-
tween sampled positions in the latent space; 3) strokeness loss, to
encourage strokes at the in-between frames to grow or vanish natu-
rally. We visually explain the loss terms in Figure 2 with an intuitive
example. The details of our loss terms are as follows.

Reconstruction loss and perceptual loss. For a frame a in the
training sequence, we have:

Lrecon =
∥∥Ia − I′a

∥∥
1 (5)

Lpercep = ∑
k

∥∥VGGk(Ia)−VGGk(I
′
a)
∥∥

1 . (6)

where VGGk(·) is the kth layer of a VGG network pre-trained
on ImageNet. We expect line drawings rendered with same NPR
parameters to have the same latent style code. We implement
this by generating I′a with the style code learned from another
frame b rendered with the same NPR parameters x, i.e., I′a =
G(EG(Ma);ES(Ib,x,Mb)). We also explicitly supervise this prop-
erty with an intrinsic loss:

Lintrinsic =
∥∥za,x − zb,x

∥∥2
2 , (7)

where a, b are randomly sampled frames, x is a set of parameters
used for NPR rendering, za,x =ES(Ia,x,Ma) and zb,x =ES(Ib,x,Mb).

Sparsity loss. Since our goal is to generate a line drawing with
binary strokes, therefore, we adopt a sparsity loss to penalize gray
pixels in the generated image.

Lsparsity =
∥∥I′a

∥∥
1 . (8)

Interpolation loss. It is not obvious to generate in-between

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Wang et al. / Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models

styles for any pair of synthetic NPR line drawings as they may
use different methods. Here we propose a self-supervised loss to
encourage a smooth transition between sample pairs in training:

Linterp = ∑
k

∥∥VGGk(I
′
2)−VGGk(I

′
t)
∥∥

1 (9)

+
∥∥VGGk(I

′
t)−VGGk(I

′
1)
∥∥

1 , (10)

where I′1 = G(EG(Ma);z1) and I′2 = G(EG(Ma);z2) are generated
images with two different styles z1 and z2 for the same frame. I′t =
G(EG(Ma);zt) is generated with zt = (1− t)z1 + tz2, a randomly
sampled style code between z1 and z2.

Strokeness loss. Here we take a closer look at the growing or
vanishing of a stroke during style change. A natural way should
treat the stroke as a whole and elongate or shorten it in a certain
direction instead of placing fragmented segments and connecting
them. Therefore, we adopt a strokeness term here to encourage a
continuous stroke during interpolation. Specifically,

Lstroke =
∥∥GauSmk(|I′2 − I′t |)

∥∥
0.5 (11)

+
∥∥GauSmk(|I′t − I′1|)

∥∥
0.5 , (12)

where GauSmk(·) is the 2D Gaussian smoothing operator with a
kernal size of k = 7. This is based on our observation that Gaussian
smoothing produces more non-zero pixels when the pixels from the
input image is more separate from each other.

Adversarial loss. Finally, we apply a standard adversarial loss
with a discriminator D [KLA∗20] when training our network.

We train our network with a combination of all the loss terms
listed above with the same weight. In the supplementary material,
we discuss the details of our dataset and implementation and show
that the loss terms derived from prior knowledge of strokes leads to
better drawing generation and interpolation.

4. Generalization

A systematic evaluation in terms of latent style space embedding,
disentanglement between style and geometry, and style interpola-
tion can be found in the supplementary material. Here we show
how our network can generalize to unseen frames and scenarios.

Unseen frames. Once a network is trained, we test how well it
generalizes to the unseen frames in the same animation. This hap-
pens when an animator edits the 3D animation, e.g., inserts new
frames to the given sequence or updates the 3D shape at some ex-
isting frames. In Figure 3, we train a model on the first 2000 frames
and apply it on the following unseen subsequence from the Human
dataset. The style code is obtained from the first frame which is an
edited NPR line drawing, and the style code remains the same for
the entire unseen sequence. The nearest neighbors retrieved from
the training dataset indicate that although the target pose is very
different from the training dataset, our method generalizes well to
the unseen sequence. This is particularly useful as the line drawing
animation can update automatically without further manual effort.

Unseen animation. Training our network from scratch is time
consuming due to the complexity of the architecture, especially our
StyleGAN-based generator G. Alternatively, once a new animation
sequence is given, we can make the most use of existing models

Figure 3: Generalization to unseen frames. We evaluate our
trained model on an unseen subsequence from the same anima-
tion. In each row, the style is properly propagated to unseen frames,
compared to the nearest neighbor from the training set (black box).

trained on previous cases. In Figure 4, we see that directly apply-
ing the model trained on another dataset performs reasonable on
style embedding and line drawing reconstruction, while style inter-
polation generates artifacts at in-between frames. This is because
although our training NPR line drawings are generated based on
local geometric features, our self-supervision losses break such lo-
cality for better line drawing generation during style interpolation.
Fortunately, the pre-trained model provides a good starting point
for fine-tuning. In both test cases, after 500 iterations of fine-tuning
(∼ 7 minutes), the produced in-between frames are getting reason-
able. After 1k iterations (∼ 15 minutes), the in-between frames are
already very similar to the results generated by the network trained
from scratch, which is supported by the decreasing error.

5. Applications

With the framework described above, we propose an interactive
workflow for line drawing animation authoring. Starting from a
3D animation sequence, we first build our case-specific dataset us-
ing NPR methods over all frames of the sequence. With the syn-
thetic dataset, we finetune (or train from scratch) our networks
GeoNet (EG), StyleNet (ES), and Generator (G) with the proposed
loss terms. After the training/fine-tuning is done, the user then se-
lects an example line drawing Ia from the NPR dataset to initial-
ize the animation. We obtain the latent code za = ES(Ia,Ma) and
generate the line drawing animation for the whole sequence with
Ik = G(EG(Mk),za), where k is the frame ID. Meanwhile, we add
za at frame a to our keyframe set. The user may view the anima-
tion and decide which frames need to be modified. The user may
select another keyframe b and create a line drawing Ib. We embed
Ib into our latent space with the optimization framework to obtain
zb accordingly. zb at frame b will be added into our keyframe set,
after which we update the animation sequence with linear interpo-
lation/extrapolation of z in the keyframe set. A keyframe can also
be deleted and the animation will be updated similarly.

We invited five users with different levels of drawing expertise
to test our prototype system. We show a typical case on Lilly in
Figure 5. We observe that usually our system offers a plausible line
drawing animation that matches users’ intention after they select
about 3% out of all frames as keyframes and create line drawings
for these keyframes. The users recognize the value of our system
as they no longer need to draw every single frame to create an ani-
mation. They also appreciate the intuitive control and interactivity
that our system provides in contrast to other hard-to-edit results.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Wang et al. / Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models

Figure 4: Generalization to unseen scenarios. Our trained model can be adapted to a different scenario after a few iterations of fine-tuning.
Here we show a model trained on Mouse and tested on Lilly, as well as one trained on Lilly and tested on Mouse. Since our networks
learn non-local features for drawing interpolation, directly applying the pre-trained models (∼ 48 hours) without fine-tuning generates
artifacts (1st row). The performance improves rapidly after a few iterations (∼ 7 to 15 minutes) of fine-tuning (2nd and 3rd rows). We report
the L1 +VGG error between each entry and the corresponding frame generated by the model trained on the target dataset (4th row).

Figure 5: An interactive pipeline for line drawing animation synthesis. Starting from the given 3D animation a), the user first selects a
keyframe (frame 18) and creates a line drawing (highlighted in red box). Our method automatically propagates its style to the rest of the
animation b). The user can iteratively add new keyframes (frame 84 in c), frame 54 in d), and frame 30 in e)) and edit line drawings at the
keyframes. Our method smoothly blends the style between the keyframes. The user can also delete a keyframe (frame 18 in e)). Our system
offers smooth interpolation between input line drawings at the keyframes and automatically updates the drawing animation after each edit.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Wang et al. / Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models

6. Conclusion

In this paper, we have presented a method for interactive line draw-
ing synthesis from animated 3D models by learning a latent style
representation disentangled from the underlying geometry. Our ap-
proach efficiently learns a meaningful latent style space and results
in a powerful line drawing generator, which can create clean draw-
ings at a single frame and also interpolate the line drawings nat-
urally along an animation sequence. This plays a critical role in
establishing a prototype system that supports interactive authoring
of line drawing animation. Our workflow worked well on various
test cases and received positive feedback from our users.

In the future, we will extend our method to deal with more di-
verse stroke appearances and take hatching into consideration. Col-
lecting line drawings for a data-driven based approach is always
challenging, so we used a synthetic dataset in this work. Adopting
more synthesis techniques may increase the diversity of our dataset,
which can help reduce its gap to real human input. Since strokes are
the fundamental element of a drawing, we will explore if using a
vector representation will lead to better results. Finally, it is inter-
esting to integrate sketch-based modeling techniques so users can
edit the 3D animation sequence at the same time.

Acknowledgments

This research began during an internship at Adobe Research and
was sponsored in part by Adobe Research. We thank Aaron Hertz-
mann, Li-Yi Wei, Rubaiat Habib, Leonard McMillan, and Mian-
lun Zheng for the helpful discussions. This work was partially sup-
ported by National Science Foundation award #1942257.

References
[AQW19] ABDAL R., QIN Y., WONKA P.: Image2StyleGAN: How to

Embed Images into the StyleGAN Latent Space? In Proceedings of the
IEEE International Conference on Computer Vision (2019), pp. 4432–
4441. 2

[AQW20] ABDAL R., QIN Y., WONKA P.: Image2StyleGAN++: How
to Edit the Embedded Images? In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (2020), pp. 8296–8305. 2

[BCK∗13] BÉNARD P., COLE F., KASS M., MORDATCH I., HEGARTY
J., SENN M. S., FLEISCHER K., PESARE D., BREEDEN K.: Stylizing
Animation by Example. ACM Trans. Graph. 32, 4 (jul 2013). 2

[CAC22] CACANI PTE. LTD.: 2D Animation & Inbetween Software -
CACANi. https://cacani.sg/, 2022. 2

[CGL∗08] COLE F., GOLOVINSKIY A., LIMPAECHER A., BARROS
H. S., FINKELSTEIN A., FUNKHOUSER T., RUSINKIEWICZ S.: Where
Do People Draw Lines? ACM Trans. Graph. 27, 3 (Aug 2008), 88:1–
88:11. 1

[DFRS03] DECARLO D., FINKELSTEIN A., RUSINKIEWICZ S., SAN-
TELLA A.: Suggestive Contours for Conveying Shape. ACM Trans.
Graph. 22, 3 (July 2003), 848–855. 1, 2, 3

[Fle05] FLEISCHER R.: Out of the Inkwell: Max Fleischer and the Ani-
mation Revolution. University Press of Kentucky, 2005. 2

[JDA07] JUDD T., DURAND F., ADELSON E.: Apparent Ridges for Line
Drawing. ACM Trans. Graph. 26, 3 (July 2007). 1, 2, 3

[JSH09] JAIN E., SHEIKH Y., HODGINS J.: Leveraging the Talent of
Hand Animators to Create Three-Dimensional Animation. In Proceed-
ings of the Symposium on Computer Animation (New York, NY, USA,
2009), ACM, p. 93–102. 2

[JSMH12] JAIN E., SHEIKH Y., MAHLER M., HODGINS J.: Three-
Dimensional Proxies for Hand-Drawn Characters. ACM Trans. Graph.
31, 1 (Feb. 2012). 2

[KLA19] KARRAS T., LAINE S., AILA T.: A Style-Based Generator
Architecture for Generative Adversarial Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (2019),
pp. 4401–4410. 2

[KLA∗20] KARRAS T., LAINE S., AITTALA M., HELLSTEN J., LEHTI-
NEN J., AILA T.: Analyzing and Improving the Image Quality of Style-
GAN. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2020), pp. 8110–8119. 2, 4

[LFHK21] LIU D., FISHER M., HERTZMANN A., KALOGERAKIS E.:
Neural Strokes: Stylized Line Drawing of 3D Shapes. In Proceed-
ings of the IEEE International Conference on Computer Vision (2021),
pp. 14204–14213. 2

[LLM∗19] LI M., LIN Z., MECH R., YUMER E., RAMANAN D.: Photo-
Sketching: Inferring Contour Drawings From Images. In Proceedings of
the IEEE Winter Conference on Applications of Computer Vision (2019),
pp. 1403–1412. 1

[LNHK20] LIU D., NABAIL M., HERTZMANN A., KALOGERAKIS E.:
Neural Contours: Learning to Draw Lines from 3D Shapes. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (2020). 1

[OBS04] OHTAKE Y., BELYAEV A., SEIDEL H.-P.: Ridge-Valley Lines
on Meshes via Implicit Surface Fitting. ACM Trans. Graph. 23, 3 (Aug.
2004), 609–612. 1, 2, 3

[RAP∗21] RICHARDSON E., ALALUF Y., PATASHNIK O., NITZAN Y.,
AZAR Y., SHAPIRO S., COHEN-OR D.: Encoding in Style: A Style-
GAN Encoder for Image-to-Image Translation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (2021),
pp. 2287–2296. 2

[SBF∗18] SU Q., BAI X., FU H., TAI C.-L., WANG J.: Live Sketch:
Video-Driven Dynamic Deformation of Static Drawings. In Proceedings
of the CHI Conference on Human Factors in Computing Systems (New
York, NY, USA, 2018), ACM, p. 1–12. 2

[SGLT21] SARKAR K., GOLYANIK V., LIU L., THEOBALT C.: Style
and Pose Control for Image Synthesis of Humans from a Single Monoc-
ular View, 2021. arXiv:2102.11263. 2, 3

[TAN∗21] TOV O., ALALUF Y., NITZAN Y., PATASHNIK O., COHEN-
OR D.: Designing an Encoder for StyleGAN Image Manipulation. ACM
Trans. Graph. 40, 4 (2021), 1–14. 2

[TEB∗20] TEWARI A., ELGHARIB M., BERNARD F., SEIDEL H.-P.,
PÉREZ P., ZOLLHÖFER M., THEOBALT C.: PIE: Portrait Image Em-
bedding for Semantic Control. ACM Trans. Graph. 39, 6 (2020), 1–14.
2

[UVL18] ULYANOV D., VEDALDI A., LEMPITSKY V.: Deep Image
Prior. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2018), pp. 9446–9454. 2

[WLP∗17] WILLETT N. S., LI W., POPOVIC J., BERTHOUZOZ F.,
FINKELSTEIN A.: Secondary Motion for Performed 2D Animation.
In Proceedings of the ACM Symposium on User Interface Software and
Technology (New York, NY, USA, 2017), ACM, p. 97–108. 2

[WNS∗10] WHITED B., NORIS G., SIMMONS M., SUMNER R. W.,
GROSS M., ROSSIGNAC J.: BetweenIT: An Interactive Tool for Tight
Inbetweening. Computer Graphics Forum 29, 2 (2010), 605–614. 2

[WQF∗21] WANG Z., QIU S., FENG N., RUSHMEIER H., MCMILLAN
L., DORSEY J.: Tracing Versus Freehand for Evaluating Computer-
Generated Drawings. ACM Trans. Graph. 40, 4 (Aug. 2021). 2

[WSFM19] WANG T. Y., SHAO T., FU K., MITRA N. J.: Learning an
Intrinsic Garment Space for Interactive Authoring of Garment Anima-
tion. ACM Trans. Graph. 38, 6 (Nov. 2019). 2

[XWSY15] XING J., WEI L.-Y., SHIRATORI T., YATANI K.: Autocom-
plete Hand-Drawn Animations. ACM Trans. Graph. 34, 6 (Oct. 2015).
2

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://cacani.sg/
http://arxiv.org/abs/2102.11263

Pacific Graphics (2022) Short Paper
N. Umetani, E. Vouga, and C. Wojtan (Editors)

Learning a Style Space for Interactive Line Drawing Synthesis from
Animated 3D Models (Supplementary Material)

Zeyu Wang1 , Tuanfeng Y. Wang2 and Julie Dorsey1

1Yale University 2Adobe Research

1. Overview

In the supplementary material, we describe the details of input
drawing embedding at run time, dataset preparation, network archi-
tecture, and training strategy. We provide a systematic evaluation
with various test cases and show that our approach learns a power-
ful latent style space for effective line drawing animation synthesis
given different types of user input. We then validate our system
design choices via ablation studies.

2. Input Drawing Embedding

At run time, we allow the user to create a line drawing at a keyframe
in the animation. We need to obtain a style code from the input
drawing that can faithfully reconstruct itself via our generator. The
source of the input drawing can be 1) a NPR rendering of the
keyframe with a set of user-specified parameters; 2) manual edit-
ing based on 1), e.g., removing or adding strokes; and 3) draw-
ing from scratch over a reference image of the underlying geom-
etry. Due to the huge space of drawing variation and limited ca-
pacity of NPR drawing generation, our StyleNet (ES) only works
well with input from 1). To enable an interactive editing workflow
with full user control, during test time, we adopt an optimization-
based approach to embed an input drawing Ia at keyframe a into
the latent style space. Specifically, we compute geometry feature g
when a keyframe is selected. We freeze the weights of our gener-
ator G and optimize a latent code z∗ so that the generated image,
I′a = G(g;z), is similar to the input drawing. Since the gradient of
our binary drawing can be unstable for optimization, we adopt a
pyramid structure with different levels of blurring, i.e.,

z∗ = argmin
z

∑
k=1,33,65

∥∥GauSmk(Ia)−GauSmk(I
′
a)
∥∥

1 , (1)

where k is the kernel size of the Gaussian smoothing operator
in pixels. We initialize the optimization with the projection of
StyleNet, i.e., z0 = ES(Ia,Ma).

3. Implementation Details

3.1. Training Data

We evaluate our approach on five animation sequences:
Mouse [ZZCB21] (480 frames), Lilly [3DP22] (1,200 frames),

Figure 1: Sample training data for the Human character. Our syn-
thetic dataset consist of line drawings generated with different non-
photorealistic rendering methods with varying parameters.

Figure 2: Input to GeoNet EG. We concatenated six geometric
properties, i.e., shading, depth map, and four types of surface cur-
vature. Blue represents low values and red represents high values.

Human [Ado22] (3,000 frames), Michelle [Ado22] (200
frames), and Vegas [Ado22] (123 frames). For Human, we use
the first 2,000 frames for network training and the rest of the se-
quence is only used for generalization test on unseen frames. For
each scenario, we use NPR [DFRS03] to build a synthetic dataset
for network training. For each frame, we use three NPR methods,
i.e., suggestive contours, ridges and valleys, and apparent ridges,
and sample four thresholds for each. We combine outputs from
these methods and generate 64 (4× 4× 4) NPR line drawings for
each frame and 4 additional Canny edge maps [Can86] generated
with different thresholds. For each frame, it takes about 15 seconds
on average to generate all 68 line drawings with a resolution of
W,H = 512,512. We apply commonly used techniques for 2D data
augmentation, including translation, rotation, scaling, and flipping.
We show samples training data for Human in Figure 1. Figure 2
shows an example of the input channels that represent the underly-
ing geometry at each frame with a set of geometric properties.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://orcid.org/0000-0001-5374-6330
https://orcid.org/0000-0002-8180-4988
https://orcid.org/0000-0003-2495-4979

Wang et al. / Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models (Supplementary Material)

Figure 3: User interface for drawing editing and interactive ani-
mation authoring. It allows the user to load an NPR line drawing,
edit an existing drawing, or draw from scratch. We show a shading
image of the geometry at the target frame in the background with
adjustable opacity as a reference. In the animation mode, user can
play the sequence, add, edit, and delete keyframes.

3.2. Data Collection for Evaluation

We collect line drawings from three sources to evaluate our system.

1. Similar to the synthetic dataset generation pipeline, we gener-
ate unseen NPR line drawings for selected frames from the an-
imation sequence with random sampled NPR parameters. We
denote these drawings as NPR.

2. We allow users to edit an NPR line drawing by adding new
strokes or erase existing ones. We build a user interface for
this purpose as shown in Figure 3. It allows users to select a
frame and load an NPR line drawing from the training set or
from NPR. We show a shading image of the geometry at the se-
lected frame in the background with adjustable opacity. Users
can draw and erase strokes on the left canvas. We denote these
drawings as NPR w/ edits.

3. More experienced users can directly create line drawings from
scratch by looking at the reference shading image. We denote
these drawings as Freehand.

3.3. Network Architecture and Training Strategy

Our GeoNet, EG, is a neural feature extractor built with con-
volutional layers followed by Parametric Rectifying Linear Unit
(PRelu) activation [HZRS15] and batch normalization. Starting
from the multi-channel geometric signal map Ma ∈ R512×512×6,
our network gradually decreases the dimension of the output to 256,
128, 64, and 32, while increases the number of channels gradually
to 32, 64, 256, and 512 after each layer. This results in a 2D geo-
metric feature, g ∈ R32×32×512. Our StyleNet, ES, adopts a simi-
lar architecture but maps the input line drawing Ia ∈ R512×512×1

into a 1D style code, z ∈ R1×1×2048 with five more layers. The
architecture of our generator, G, follows StyleGAN2 [KLA∗20]
including bilinear upsampling, equalized learning rate, noise in-
jection at every layer, variance adjustment of residual blocks and
leaky ReLU. The final output of this pipeline is a line drawing im-
age I′a ∈ R512×512×1. We trained our network with a learning rate

of 0.02 using four NVIDIA V100 GPUs with a batch size of 4. It
takes about 48 hours on average to converge in our experiments.

During the drawing embedding step, we implement the op-
timization using the optim package from PyTorch [Fac20]. We
choose LBFGS algorithm [LN89] as our optimizer with a learn-
ing rate of 0.1. The optimization takes place on a single NVIDIA
V100 GPU for 100 steps for all the cases discussed in this paper.
This optimization takes about 30 seconds for 50 steps on average.

4. Evaluation

We evaluate our system with respect to line drawing synthesis, style
interpolation, latent code embedding, and interactive editing. Ex-
periments show that our approach outperforms vanilla style trans-
fer and style interpolation baselines. Our approach produces plau-
sible output that follows the properties of user input and transitions
naturally in the animation. Although our network is trained in a
case-specific manner, we show that it is easy to generalize to new
cases with quick finetuning. Users of our system think the synthe-
sized line drawings are consistent with their style and are useful for
efficient and controllable animation authoring.

Latent style space embedding. We first evaluate the latent space
embedding for a given line drawing. As discussed in the paper, the
style code directly predicted from an input drawing may not be
accurate enough for an edited NPR drawing or one drawn from
scratch. In Figure 4, we see that the drawing generated from the
learned latent style code z is similar to the target input in general
but missing quite some details especially for NPR w/ edits and Free-
hand cases. With latent code optimization, the generated drawing
can recover strokes missing from the initial projection. Our pyra-
mid strategy facilitates gradient propagation and leads to better re-
construction compared to the one without the pyramid as shown by
the L1 +VGG error. In case b), the pyramid strategy helps recover
strokes that are missing in the optimization without the pyramid.

Disentanglement between style and geometry. Since we cast
the style as an intrinsic property that depicts the relationship be-
tween stroke placement and geometric features, same drawing style
at different frames in a sequence should be mapped to the same
place in the latent style space. In other words, no matter which
frame the style is learned from, the latent style code should all
produce the same drawing for the target frame. Our NPR dataset
provides consistent style across frames in a sequence. In Figure 5,
given a target line drawing Ia at a certain frame a, we randomly
pick two other frames b and c from the same sequence. The cor-
responding drawings with the same style are denoted as Ib and Ic.
We show the style code extracted from Ib and Ic can be used to
faithfully reconstruct the target drawing Ia.

Style interpolation. Our latent style space is learned from a set
of separated NPR line drawings. The dataset itself cannot provide
supervision on smooth style transition due to the nature that some
NPR parameters are not interpolatable. Instead, our interpolation
loss and strokeness loss provide self-supervision for this purpose.
Here, we evaluate the performance of our method on interpolating
between two projected latent style codes. Starting from style in-
terpolation at a fixed frame, we learn the geometric features g and
keep it unchanged during the interpolation. We embed the source

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Wang et al. / Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models (Supplementary Material)

Figure 4: Evaluation of latent style code embedding. We test our style embedding approach on different types of line drawings, i.e., NPR,
NPR w/ edits, and Freehand. We show generated drawings from 1) learned latent style code z, 2) optimized z without the pyramid strategy,
and 3) optimized z with the pyramid strategy (ours). Our approach achieves best reconstruction from the latent embedding. Red arrows
highlight challenging areas. Ours achieves the lowest L1 +VGG error as shown by the values below each entry.

Figure 5: Disentanglement between geometry and style. For each
target drawing (1st col.), we learn the latent style code z from one
rendered with the same NPR parameters but at a different frame
(2nd and 4th cols.) The drawing reconstruction from the learned
style codes is almost identical at the target frame (3rd and 5th cols.)

and target line drawings into latent space to obtain the correspond-
ing latent style codes zsource and ztarget. We perform linear interpo-
lation between zsource and ztarget to generate the transitioning line
drawings accordingly, as shown in Figure 6.

An alternative baseline method for this task is to adopt a vanilla
StyleGAN [KLA∗20]. In the even rows of Figure 6, we train a

Table 1: Statistics of style interpolation on static frame in Figure 6.
We calculate sparsity loss, interpolation loss, and the strokeness
loss along the interpolated sequence. We show our method outper-
forms the baseline approach on style interpolation.

Lilly Mouse
Lsparsity Linterp Lstroke Lsparsity Linterp Lstroke

Ours 0.069 0.044 0.025 0.098 0.073 0.042
NPR

Baseline 0.082 0.207 0.113 0.130 0.237 0.181
Ours 0.054 0.047 0.020 0.075 0.097 0.034

NPR w/ edits
Baseline 0.059 0.275 0.147 0.099 0.190 0.148

Ours 0.073 0.096 0.047 0.072 0.126 0.052
Freehand

Baseline 0.072 0.283 0.148 0.090 0.244 0.168

vanilla StyleGAN with the same NPR dataset and perform the
drawing embedding with our pyramid-based optimization. Instead
of performing interpolation in the style space, we directly per-
form interpolation in the W space for the vanilla StyleGAN to
generate corresponding output. The optimization-based embedding
performs reasonable for reconstructing target drawings in the W
space [KLA∗20]. However, without an explicit disentanglement of
style and geometry, the interpolation results using the vanilla Style-
GAN have heavy artifacts.

In this experiment, we test line drawings from NPR, NPR w/ ed-
its, and Freehand. We show that our method learns a robust latent
style space for all the three types of drawings. In Table 1, we report
the sparsity loss, interpolation loss, and the strokeness loss along
the interpolated sequence. We show that our method achieves lower
loss which agree with the qualitative comparison.

Next, we elaborate on the experiment setup for an animation
sequence rather than a static frame. The geometric features g are

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Wang et al. / Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models (Supplementary Material)

Figure 6: Style interpolation at a static frame. For each case, the source line drawing (1st or 6th column) and the target (5th or 10th column)
are given and embedded into the style space. Linearly interpolated style codes are used to generate transitioning line drawings (2nd–4th or
7th–9th columns). We compare our approach (odd rows) with a baseline method (even rows), vanilla StyleGAN trained with the same dataset.
Our approach outperforms the baseline method due to geometry/style disentanglement and drawing-specific supervision during training.

Figure 7: Style interpolation between dynamic frames. We evaluate our system on animation sequences with dynamic frames using the same
experiment setup from Figure 6.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Wang et al. / Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models (Supplementary Material)

Figure 8: t-SNE visualization of style interpolation between dy-
namic frames. For the Lilly dataset, we calculate the VGG fea-
tures for 10k randomly sampled NPR line drawings in the training
dataset and embed them into a 2D space via t-SNE [VdMH08]. We
then calculate the VGG features for each frame in the three clips
shown in Figure 7. We visualize the three sequences (NPR: red,
NPR w/ edits: green, Freehand: blue) with the same 2D embed-
ding. The trajectories indicate that the predicted style interpolation
between frames is perceptually smooth and generalized well to un-
seen styles (NPR w/ edits and Freehand).

learned from the underlying geometry at each frame accordingly,
while the style code z is still interpolated linearly between the
source and target line drawings. As shown in Figure 7, our learned
latent space supports different types of line drawings for interpo-
lation between the frames. The generated line drawings have a
smoothly transitioning style along the sequence. We also visualize
the drawing sequence as a trajectory in the 2D embedding space
as shown in Figure 8. Specifically, for the test animation, we ran-
domly sample 10k NPR line drawings from our dataset and com-
pute the 512-dimensional VGG feature for each drawing. We apply
t-distributed stochastic neighbor embedding (t-SNE) [VdMH08]
for the VGG features. For the sequences in Figure 7, we embed the
VGG feature for each entry into the same t-SNE domain. We see
that the line drawing animation with linear interpolated style forms
a smooth trajectory in the perceptual embedding space. This backs
up our observation that the transition between source and target line
drawings is smooth and natural.

5. Ablation Study

We use an ablation study to validate our design choices. Starting
from a source edited NPR line drawing, we perform style interpo-
lation on a static frame towards a target edited NPR line drawing.
Figure 9 shows the effect of the loss terms used in network train-
ing. We see that the three losses proposed to self-supervise drawing
interpolation, i.e., sparsity loss, interpolation loss, and strokeness
loss, are functioning as expected as the toy examples discussed in
the paper. We observe a smoother transition from the source to the
target in our full pipeline. We also observe that those losses pro-
vide supervision over the gaps between samples in the NPR dataset,
which helps the method generalize to unseen input line drawings.

We adopt the same style interpolation setup to evaluate the effect
of latent space dimension. We train the same network but reduce the
dimension of the latent style space from 2048 to 1024 to 512. After
training with the same number of epochs, we compare their style
interpolation performance in Figure 10. We observe that the qual-
ity of line drawing synthesis is improved along with the increase
of the latent space dimension, where the model size and training
time for each epoch are increased as well. Therefore, our choice
of a 2048-dimensional latent style space is a reasonable tradeoff
between training efficiency and network performance.

References
[3DP22] 3DPEOPLE: 3D People for Your Visualizations and Animations.
https://3dpeople.com/, 2022. 1

[Ado22] ADOBE: Mixamo. https://www.mixamo.com, 2022. 1

[Can86] CANNY J.: A Computational Approach to Edge Detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence 8, 6 (Nov
1986), 679–698. 1

[DFRS03] DECARLO D., FINKELSTEIN A., RUSINKIEWICZ S., SAN-
TELLA A.: Suggestive Contour Software: rtsc. https://rtsc.cs.
princeton.edu, 2003. 1

[Fac20] FACEBOOK: torch.optim. https://pytorch.org/docs/
stable/optim.html, 2020. 2

[HZRS15] HE K., ZHANG X., REN S., SUN J.: Delving Deep into Rec-
tifiers: Surpassing Human-Level Performance on ImageNet Classifica-
tion. In Proceedings of the IEEE International Conference on Computer
Vision (2015), pp. 1026–1034. 2

[KLA∗20] KARRAS T., LAINE S., AITTALA M., HELLSTEN J., LEHTI-
NEN J., AILA T.: Analyzing and Improving the Image Quality of Style-
GAN. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2020), pp. 8110–8119. 2, 3

[LN89] LIU D. C., NOCEDAL J.: On the Limited Memory BFGS method
for Large Scale Optimization. Mathematical Programming 45, 1 (1989),
503–528. 2

[VdMH08] VAN DER MAATEN L., HINTON G.: Visualizing Data Using
t-SNE. Journal of Machine Learning Research 9, 11 (2008). 5

[ZZCB21] ZHENG M., ZHOU Y., CEYLAN D., BARBIC J.: A Deep Em-
ulator for Secondary Motion of 3D Characters. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (2021),
pp. 5932–5940. 1

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://3dpeople.com/
https://www.mixamo.com
https://rtsc.cs.princeton.edu
https://rtsc.cs.princeton.edu
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/optim.html

Wang et al. / Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models (Supplementary Material)

Figure 9: Ablation study of loss terms. Given the same source and target line drawings, we first embed the drawings to obtain their latent
style codes. We linearly interpolated the style codes to generate the in-between drawings. From top to bottom, we first show our method (a),
and gradually remove strokeness loss (b), interpolation loss (c), and sparsity loss (d). Reconstruction error is reported for the embedding
of source and target drawings. Red arrows highlight the artifacts in the interpolation. We show that, with all the loss terms, our approach
performs the best for style interpolation and reconstruction of unseen input line drawings.

Figure 10: Ablation study of latent space dimension. We train the same network with a latent space dimension gradually decreasing from
2048 to 1024 to 512. With an experiment setup similar to Figure 9, we show that a 2048-dimensional latent space (ours) is more capable of
learning diverse drawing styles. Decreasing latent space dimension worsens the performance in drawing embedding and style interpolation.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

