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We propose three automatic algorithms for analyzing digitized medieval manuscripts: text block computation, text line seg-
mentation and special component extraction, by taking advantage of previous clustering algorithms and a template matching

technique. These three methods are completely automatic, so that no user intervention or input is required to make them work.

Moreover, they are all per-page based; that is, unlike some prior methods–which need a set of pages from the same manuscript
for training purposes–they are able to analyze a single page without requiring any additional pages for input, eliminating the

need for training on additional pages with similar layout. We extensively evaluated the algorithms on 1771 images of pages

of 6 different publicly available historical manuscripts, which differ significantly from each other in terms of layout structure,
acquisition resolution, and writing style, etc. The experimental results indicate that they are able to achieve very satisfactory

performance, i.e., the average precision and recall values obtained by the text block computation method can reach as high as

98% and 99%, respectively.
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1. INTRODUCTION

Over recent years, a large number of historical manuscripts have been digitized and made public,
successfully building numerous digital libraries all over the world. For massive collections, there is
a pressing need for automatic computer-aided techniques that are able to perform prompt and intel-
ligent document analysis in order to extract various types of information [Pintus et al. 2015], such
as text lines and capital letters. Given the extracted information of interest, scholars can then carry
out their manuscript studies more efficiently and in greater depth. While manual or semi-automatic
techniques can be used for performing analysis on smaller datasets, once the datasets reach a certain
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Fig. 1. Algorithmic pipeline. Given an image, we present three automatic algorithms: text block computation, text line segmen-
tation and FCLs extraction for it, based on using template matching and clustering techniques. Manuscript images courtesy of
the Yale University [BeineckeMS10 ].

size these techniques become unfeasibly expensive in terms of both time and labor. For instance, when
dealing with large-scale datasets that contain a considerable degree of variability in manuscript phys-
ical structure, non-automatic techniques are not as desirable since, in such a context, they usually
require distinctive parameter settings for producing good results.

Although some automatic methods [Chen et al. 2014] [Pintus et al. 2014] for analyzing medieval
manuscripts have recently been proposed, they can only work on a per-book/manuscript basis. In other
words, they require the availability of multiple pages from the same manuscript in order to train a
manuscript-dependent classifier. The dependency issue could restrict their range of applicability, i.e.,
they, when applied to deal with a database that contains pages of structure-distinctive manuscripts,
will likely fail due to the difficulty of obtaining a generalized classifier that is reasonable for all the
data in the dataset. Therefore, algorithms that can work on a per-page basis are in high demand.

Two complicating factors are (i) that medieval manuscripts generally have sophisticated physical
structures, such as flexible writing style and holes; and (ii) that they have undergone significant degra-
dation, due to aging, frequent handling and storage conditions. Thus, it is generally more challenging
to design an algorithm for analyzing medieval manuscripts than modern machine-printed documents.
Expectedly, the methods [Park et al. 2001] specially designed for modern machine-printed documents
are unlikely to produce reasonable results when applied to historical manuscripts [Pintus et al. 2015].
Despite potential difficulties, attempts have been made towards developing computer-assisted tech-
niques for layout analysis of medieval manuscripts. These previous works concentrate mainly on word
spotting [Rath and Manmatha 2003], word segmentation [Louloudis et al. 2009] and text line extrac-
tion [Pintus et al. 2015].

We develop three fully automatic, per-page based algorithms for analyzing medieval manuscripts: (i)
text block computation, (ii) text line segmentation and (iii) special component extraction. By “medieval
manuscripts” we refer to professionally prepared books prior to the advent of mechanical printing.
Such books were prepared by professionals, who as a step in manuscript preparation ruled the parch-
ment before writing, so that they generally have regular layouts and stable features [De Hamel 1992].
Thousands and thousands of such books professional produced by hand have survived and are an ob-
ject of study by scholars. For the Book of Hours, which we use for our tests, there are at least 800
ACM Journal on Computing and Cultural Heritage, Vol. *, No. *, Article *, Publication date: September 2016.
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surviving copies. Scholars, such as the scholar we worked with, are interested in finding variations in
these book copies that convey individuality in their production [Brantley 2009].

The algorithmic pipeline is illustrated in Fig. 1. Note that by special components, we mean those
semantically meaningful elements that are not text. Since the special components in our test dataset
are almost solely figures and capital letters (see Fig. 9), we shall abbreviate them as FCLs. The text
blocks and lines are extracted based on analyzing a projection profile derived from its corresponding
binary image. Although the use of binary images likely results in weak robustness against factors
such as noise, our methods cope with this limitation by using the reliable text leading/height [Pintus
et al. 2015] as the a priori knowledge about the page’s physical structure. As demonstrated by our
experiments on different manuscripts, the presented approaches can achieve satisfactory robustness.
Similar to previous methods [Chen et al. 2014; Grana et al. 2009], we also formulate the extraction of
FCLs as a clustering problem, but with two main distinctions. First, we utilize both unsupervised and
supervised learning algorithms for improved performance, while prior methods often take into account
supervised learning only. Second, the proposed algorithm is a per-page based algorithm that can carry
out single page-based training, which is implemented through a novel conversion that transforms
the outputs of unsupervised learning into the inputs of supervised learning. By contrast, to the best
of our knowledge, prior methods perform multiple-page based training, which requires information
contained in few pages from the same manuscript during the training process. As such, they fail to
produce reasonable results when working on a database of digital images from multiple distinct books.

The current paper is a significantly extended version of our previous work on color analysis [Yang
et al. 2015]. We in this paper use similar image template matching idea presented in [Yang et al. 2015]
to identify text pixels of a given page image and also use the same constraints described in [Yang et al.
2015] to determine if an FCL candidate is a real or valid FCL. The new material includes: (i) text block
computation; (ii) text line segmentation; and (iii) new approach to identifying FCLs. In sum, the main
contributions of this paper are summarized as follows:

—Three automatic, per-page based algorithms for analyzing medieval manuscripts.
—A demonstration of how to combine unsupervised and supervised learning algorithms properly for

classification purposes.
—Extensive evaluation of our proposed algorithms on a dataset of 1771 images of pages of 6 structure-

distinctive medieval manuscripts.

Overall, the purpose of our paper is to create a reliable framework for performing document layout
analysis on medieval manuscripts. Although some assumptions regarding medieval text height/width
are made, the framework is highly modular, and some steps are independent of the assumptions so
that it is adaptable to other writing styles by, for example, finding a new assumption for a particular
type of manuscripts.

The rest of this paper is organized as follows. Section 2 reviews relevant literature. Sections 3 and 4
cover the extraction of text blocks and text lines respectively. The algorithm for localizing and extract-
ing FCL is described in detail in Section 5. The experimental results are presented and discussed in
Section 6, and we give a brief conclusion in Section 7. In order to aid in clarity, we have included the
frequently used symbols in this paper in Table I.

2. RELATED WORK

There are many excellent works on analyzing historical documents and they focus on various aspects of
analysis, such as word matching [Rath and Manmatha 2003] [Rodrı́guez-Serrano and Perronnin 2009],
word segmentation [Manmatha and Rothfeder 2005] [Louloudis et al. 2009], text line extraction [Pin-
tus et al. 2015] [Louloudis et al. 2008] [Saabni et al. 2014] and figure extraction [Grana et al. 2009].
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Table I. Frequently used symbols.
Symbol Meaning

H text height/leading
W text width
K number of colors/clusters
B binary image
S matrix of original matching scores
S′ matrix of updated matching scores
d·e ceiling function
|x| absolute value of x

For concision we will only review the most relevant here. For a more exhaustive comparison of layout
analysis algorithms, we refer the reader to recent surveys and contests [Nagy 2000] [Likforman-Sulem
et al. 2007] [Antonacopoulos et al. 2009] [Stamatopoulos et al. 2013].

Text Line Extraction. Projection profiles have been extensively used for extracting text lines. Man-
matha et al. [Manmatha and Rothfeder 2005] compute the projection profile by summing up the pixel
values line-by-line. Next, the profile is smoothed with a Gaussian filter to reduce noise sensitivity. Fi-
nally, text lines are found by detecting the peaks of the smoothed profile. Arivazhagan et al. [Arivazha-
gan et al. 2007] propose a skew-resistant method, where an initial set of candidate lines is obtained
from the piece-wise projection profile of the input image, and the lines traverse around any obstructing
handwritten connected component by associating it with the line above or below. However, there are
many problems that are extremely common with these project profile based methods, such as a high
sensitivity to noise, inconsistent inter-line spacing, and text-line skew variability.

The Hough transform has also been successfully exploited for text line segmentation [Louloudis et al.
2008] [Likforman-Sulem et al. 1995] [Fletcher and Kasturi 1988]. Likforman-Sulem et al. [Likforman-
Sulem et al. 1995] propose a hypothesis-validation scheme. That is, they extract the best text line
hypothesis in the Hough domain, while checking the validity of the hypothesis in the image domain.
Alternatively, Louloudis et al. [Louloudis et al. 2008] employ block-based Hough transform to detect
potential text lines.

Image smearing-based algorithms include both the fuzzy [Shi and Govindaraju 2004] and adap-
tive RLSA (Run Length Smoothing Algorithm) [Nikolaou et al. 2010]. In some approaches, the RLSA
measure is computed for every pixel, yielding an RLSA-based grayscale image. Then, this grayscale
image is binarized and the text lines are extracted from the binary image. Other text line extraction
methods [Pintus et al. 2015] are based on feature training and testing.

Although some advanced algorithms [Shi et al. 2009] [Koo and Cho 2012] [Ryu et al. 2014] have been
recently proposed to extract text lines, they focus on dealing with the images that are of high contrast
between background and foreground. Consequently, they generally do not work when used to perform
text line extraction for images of medieval manuscripts, where the contrast between background and
foreground could be quite low.

As compared to our method, some of the existing algorithms focus on different classes of documents.
For instance, the work by Garz et al. [2013] deals with documents that have been stored improperly so
that the pages are not flattened, while we consider the thousands of medieval manuscripts stored in li-
braries that are not severely damaged as in the special case given here. Bar-Yosef et al. [2009] propose
an algorithm that works for documents with large skew, which does not occur for the professionally
prepared books we are studying. Arvanitopoulos et al. [2014] study a different class of algorithms for
cutting out irregular shapes of text, that are useful for applications such as handwritten correspon-
dence, but are not relevant to the analysis of professionally prepared medieval books.
ACM Journal on Computing and Cultural Heritage, Vol. *, No. *, Article *, Publication date: September 2016.
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Our proposed method computes text lines by analyzing projection profiles. Indeed, similar ideas have
been used in previous algorithms [Manmatha and Rothfeder 2005], but with two main distinctions.
While prior methods work by analyzing whole images, our proposed algorithm analyzes text blocks
instead. In addition, we use the reliable text leading [Pintus et al. 2015] as the a priori knowledge
about the page physical structure; however, prior algorithms do not generally employ or consider this
useful information. It is this distinction that allows for our great success in producing such projection
profiles which can be analyzed with less effort and which can therefore generate better results.

Text Block Extraction. In the past, algorithms have been presented which have been capable
of text block segmentation. While Jain and Yu [Jain and Yu 1998] concentrate on geometric layout
analysis of printed technical journal pages, Baechler et al. [Baechler et al. 2010] describe a semi-
automatic tool for historical manuscripts. More recently, Pintus et al. [Pintus et al. 2014] propose a
text block extraction method for medieval manuscripts. However, this method is per-book/manuscript
based, requiring the availability of a set of pages from the same manuscript in order to train a classifier
for identifying text pixels.

While Asi et al. [2014] treat a problem in variation in text layout (i.e. writing in curved lines in varies
blocks around main text blocks) in ancient (not medieval) texts that do not occur in the class of profes-
sionally prepared medieval books that we study, Shafait et al. [2008] consider the segmentation used
by various OCR methods applied to mechanically printed books. The problems considered in [Mehri
et al. 2014] are not present in the class of documents we consider. As we can see, none of these papers
is dealing with the same type of documents or the same problem we are interested in the paper.

Motivated by [Yang et al. 2015], we utilize a template matching technique to obtain texts and proceed
to extract text blocks by finding connected components. Our proposed text block extraction method
works on a per-page basis and as such requires only the page being analyzed as the input, with no
reference to other supporting pages.

Special Component Extraction. Extracting or identifying special, non-text components from his-
torical manuscripts is becoming an increasingly important aspect in contemporary document analysis.
This is generally considered as a clustering/segmentation problem, where each image pixel is classified
into one of the pre-defined groups such as text, background or decoration [Chen et al. 2014].

Chen et al. [Chen et al. 2014] develop a layout structure segmentation algorithm, where each pixel
is represented by a vector containing features based on the coordinates, color and texture informa-
tion gathered from the area surrounding the pixel. By taking advantage of the SVM (Support Vector
Machine), Grana et al. [Grana et al. 2009] propose a system for automatically extracting graphical
elements from historical manuscripts and then identifying significant pictures from them. Yang et
al. [Yang et al. 2015] introduce an algorithm for automatically estimating a reasonable number of
clusters and demonstrate the importance of using the cluster number in FCL extraction.

A common issue among methods which employ supervised learning techniques is again that they
work on a per-book basis and consequently have limited applicability. Following [Yang et al. 2015],
we propose a per-page based algorithm to efficiently address this problem. The proposed method
differs from [Yang et al. 2015] in two aspects. First, we modify the K computation strategy so that
both k-means and EM algorithm are used, while the original method uses either individually. Second,
while [Yang et al. 2015] only takes into account unsupervised learning, our method reasonably incor-
porates both unsupervised and supervised learning techniques. As demonstrated by the experimental
results, these improvements result in better classification performance.

3. TEXT BLOCK COMPUTATION

As Fig. 2 illustrates, we propose a two-stage procedure for extracting the text blocks. In the first stage,
we obtain rough text blocks by analyzing projection profiles. In the second stage we perform text block
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Stage 1: Rough Text Block Stage 2: Text Block Refinement 

Fig. 2. Two-stage text block computation pipeline. Firstly, we analyze the project profiles to yield the rough text block, whose
vertical and horizontal ranges are highlighted by green and red lines, respectively. Second, we propose a refinement strategy to
remove unwanted non-text regions from the obtained rough block and to produce a final text block. The rightmost figure shows
the text blocks before (red) and after (green) refinement. Manuscript images courtesy of the Yale University [BeineckeMS310 ].
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Fig. 3. From left to right: original image, binary image, original projection profile obtained from summing up pixel values along
rows and smoothed projection profile. Manuscript images courtesy of the Yale University [BeineckeMS10 ].

refinement by taking full advantage of a template matching technique to remove unwanted non-text
regions from the text blocks obtained, which yields better blocks.

Here we assume that a valid text block always satisfies the following constraint: its height and width
must be larger than 2 ·H and d1/4 ·Wime, respectively. Here, H and Wim represent the text leading and
image width, respectively. We compute H using the ATHENA [Pintus et al. 2013].

3.1 Stage I: Rough Text Blocks

Given a color image, we compute its corresponding binary matrix B using the image binarization
method presented in [Yang et al. 2015]. This method performs image binarization under the assump-
tion that there are more background pixels than foreground ones. Generally, the projection profile de-
rived from summing along rows of B differs significantly in shape for text and non-text regions. Taking
into account this fact, we obtain a smoothed projection profile via performing the unweighted moving
average using adjacent dH/2e neighbors of each profile point on the original profile (see Fig. 3).

Next, we compute the local maximum and minimum points of the smoothed projection profile, subject
to the constraint that the minimum distance between any two local maximum or minimum points must
be larger than or equal to α ·H. The observation is that the minimum points likely correspond to text
areas, while the image segment between any two adjacent maximum/minimum points is generally the
text lines themselves. As such, we put a constraint on the distance between two adjacent maximum
points. That is, it should approximately equal to the text height, H. For conservative purposes, α is
introduced to relax the constraint; α = 0.7 was used in our tests.

Then, let ri denote the row index of the i-th minimum point, and r−i and r+i the row indices of its 2-
nearest maximum points such that r−i < ri < r+i . We can quantitatively describe the above observation
ACM Journal on Computing and Cultural Heritage, Vol. *, No. *, Article *, Publication date: September 2016.
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and profile shape difference using the ratio defined as follows:

di = max {f(ri)/f(r−i ), f(ri)/f(r+i )}, (1)

where f(x) indicates the value at the point x of the profile. We fix di = 1 if r−i < ri < r+i does not exist.
Indeed, smaller di corresponds to the regions where text appears (see Fig. 3). The goal now becomes
extracting a subset of ratios that corresponds to the text regions. To do so, we apply the k-means++
algorithm [Arthur and Vassilvitskii 2007] (k = 2 in this paper) to the ratio set {d1, d2, ...}, yielding
k clusters C1, C2, ..., Ck. As mentioned earlier that we expect small di for the text areas, these areas
should hence correspond to the cluster Ck∗ given by

minimize
Cj

1

‖Cj‖
·
∑
di∈Cj

di

subject to max
di∈Cj

{f−1(di)} − min
di∈Cj

{f−1(di)} > 2 ·H
, (2)

where ‖x‖ stands for the number of elements in a set x and f−1(x) returns the row index associated
with x. The constraint in Eq. 2 reflects our assumption that a text block contains more than two text
lines.

Given Ck∗ , we believe that the text block(s) is/are bounded by

Θ = [ min
di∈Ck∗

{f−1(di)} − dH/2e , max
di∈Ck∗

{f−1(di)}+ dH/2e]. (3)

Notice that ±H/2 in Eq. 3 is due to the fact that a minimum point is located approximately in the
middle of a text line (see Fig. 3).

It is easy to see that the above process just prunes the non-text regions along rows. Our current focus
is on removing those unwanted regions along columns. Similarly, a column-based projection profile
is first created by summing along columns of the binary matrix of the text block computed before.
Assuming the block size is M ×N , we can obtain a N -sized binary vector v:

vi =

{
0 if si ≥ λ ·M
1 otherwise

, (4)

using the N sum values {s1, s2, ..., sN} along columns. The parameter λ in Eq. 4 is a parameter that
distinguishes text and non-text columns. In other words, if the majority of pixels along the i-th column
are foreground (black) pixels, we expect a smaller si. Moreover, this column is said to be a text column
and is associated with vi = 1. The parameter λ is found through an iterative process. Starting from
λ = 0.98, we iteratively reduce λ by 0.004, i.e., λ ← λ − 0.004, and terminate the iteration until there
are more than 10 percent of zeros in the vector v.

After this, we update v using the majority-based voting rule. Specifically, for each component vi of
v, we group its H-nearest neighbors and assign vi = 0 if there are more 0’s than 1’s in the group;
otherwise vi = 1.

Since vi = 1 corresponds to a text column, the problem now turns into finding the consecutive 1’s
within in the updated vector v. We partition v into smaller series of subvectors of consecutive elements
vi = 1. For a specific series, we claim that its corresponding columns constitute a text block if and only
if it obeys the assumption mentioned earlier.

The text blocks obtained in the first stage are not perfect; i.e., they may contain non-text regions,
especially when the given page contains decorations in the margins (see Fig. 2). Nevertheless, the
intention of producing rough blocks and preliminarily removing some unwanted image parts from the
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Fig. 4. Illustration of the refinement process for a page with multiple text blocks. Starting from the rough block (highlighted in
red), we obtain its binary text mark image P, two variants, P∗H and P∗V , of P and also P∗. Refined text blocks are computed by
extracting connected components from P∗. Manuscript images courtesy of the Oxford University [BodleianMSBodley850 ].

original is twofold: (i) a better estimate of the stroke width, W , can be computed; and (ii) the speed of
the image matching process can be greatly increased.

3.2 Stage II: Text Block Refinement

Motivated by the method presented in [Yang et al. 2015], here we refine the text blocks obtained in
the previous subsection under the assumption that the text is rectangularly shaped. This assumption
is generally true for old English and Latin manuscripts, although in some cases manuscripts have a
highly curved style that will degrade the performance of our method. Fig. 4 shows how the refinement
algorithm works for a page with multiple text blocks.

The main idea is that the text of a manuscript page can be identified by using an image template
matching technique due to the shape (rectangularly shaped) of text. We refer the reader to [Yang et al.
2015] for more detailed description on the matching process. Briefly, we, given the text height H and
text stroke width W , begin with defining a binary text stroke-like template image T:

T(i, j) =

0 if
αH ·H ≤ i ≤ βH ·H
αW ·W ≤ j ≤ βW ·W

1 otherwise
. (5)

Here, H and W are computed based on [Pintus et al. 2015] and [Von Gioi et al. 2010], respectively. The
two parameters αW and βW are fixed at αW = 0.5 and βW = 1.5, while the other parameters αH and βH
are obtained using connected component idea. Then, matching the binary image B and the template
T yields a matrix S of matching scores normalized into [0, 1] and furthermore S′ after making some
updates to S. Fig. 5 shows the color-coded S and S′ for an example image.

While Yang et al. [Yang et al. 2015] end up with choosing the pixels that corresponding to S′(x, y) < κ
for computing an appropriate number of clusters, we here regard pixels with S′(x, y) ≥ κ as text pixels.
That is, the binary text mark image P is given by:

P(x, y) =

{
0 if S′(x, y) ≥ κ and B(x, y) = 0

1 otherwise
. (6)

κ is a threshold distinguishing text and non-text and is fixed at κ = 0.75 in [Yang et al. 2015].
ACM Journal on Computing and Cultural Heritage, Vol. *, No. *, Article *, Publication date: September 2016.
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Fig. 5. Visualization of the original matching score map S and updated map S′ for the text block of Fig. 3 (left). Here, we assign
blue and red color to low and high matching scores, respectively.

With P, we can perform text block refinement based on the observation that a text block can actually
be considered as a connected component that satisfies certain constraints. Rather than extracting the
connected components directly from P, we produce a variant P∗ of it and then work on P∗ instead.

To generate P∗, we compute both horizontal-direction and vertical-direction distance maps of P. The
distance map along horizontal direction is defined as follows:

DH(x, y) = min
y′

P(x,y′)=0

{|y − y′|}. (7)

We set DH(x, y) = W +H if P(x, y′) = 0, ∀y′ does not exist. Next, we compare DH against the threshold
W , resulting in a binary image P∗H :

P∗H(x, y) =

{
0 if DH(x, y) ≤W
1 otherwise

. (8)

Similarly, we can obtain the vertical-direction distance map DV and furthermore its corresponding
binary image P∗V with the threshold H/4. Fig. 2 shows the color-coded maps for DH and DV . Then, P∗
is produced after performing element-by-element bitwise AND (&) operation between P∗H and P∗V , i.e.,
P∗ = P∗H&P∗V .

Finally, we extract all the connected components from P∗ and consider each of them as a valid refined
text block if it meets the size-based constraints mentioned at the beginning of Section 3.

The intention of generating P∗ is to “close” the gaps between non-connecting text pixels and hence
to increase the accuracy of obtaining expected text blocks. In other words, P∗H and P∗V are two variants
of P produced by adding extra zero-valued pixels into P. This addition attempts to merge certain
adjacent, yet isolated pixels or closes their “gaps” along both directions, forming one or few larger
connected components in P∗. Regarding the two thresholds used here, they are an indication that
what gaps can be filled up with zeros. As an example, considering two foreground pixels at (x1, y1) and
(x1, y2) with

y2 = arg max
y

P(x1,y)=0

{|y1 − y|}, (9)

ACM Journal on Computing and Cultural Heritage, Vol. *, No. *, Article *, Publication date: September 2016.



*:10 • Y. Yang, R. Pintus, E. Gobbetti and H. Rushmeier

we believe that the two pixels (x1, y1) and (x1, y2) are unlikely from the same text block if DH(x1, y1) >
2 ·W ; and thus they should not be connected. The dis-connectivity is implemented because DH(x1, y) >
W , ∃y ∈ [y1, y2] holds, assuming without loss of generality that y1 < y2 and hence P∗H(x1, y) = 1,
∃y ∈ [y1, y2]. Otherwise, ∀y ∈ [y1, y2], DH(x1, y) ≤W and hence P∗H(x1, y) = 0.

4. TEXT LINE SEGMENTATION

The extraction of text lines is based on analyzing the text blocks computed in the previous section.
Specifically, we extract the text lines from the binary images of the text blocks, rather than from the
given whole image. Again, the main observation is that the spacing between any two adjacent text
lines results in wave-like fluctuation in the row-based projection profile.

Following the same idea and using the same parameter setting as mentioned in Section 3.1, we
sum up the pixel values along rows of the binary image of each text block, smooth these sum values
and compute the local maximum points. Afterward, we extract the image regions bounded by any two
adjacent maximum points and deem them as text lines.

Although our text line segmentation algorithm is a binary image-based method, we achieve satis-
factory performance (precision value of up to 93.20% and 99.62% as shown in Tables IV and V, re-
spectively). This is because it works on a text block basis with the a priori knowledge about the page’s
physical structure; i.e., the height of each text line segment is expected to be approximately H.

5. FCL EXTRACTION

Next, we move on to the most challenging part, where the focus will be on identifying and extracting
FCL, if existing. Since FCL are generally colored and shaped distinctively from text (see Fig. 9), we
formulate this as a clustering problem. The algorithmic pipeline is shown in Fig. 1 and the implemen-
tation details are described as follows.

5.1 Feature and Optimal K Computation

We use the same features as used in [Yang et al. 2015] and the feature vector for each foreground pixel
is composed of 60 components associated with color and statistical characteristics, such as the mean,
standard deviation, skewness, energy and entropy of the color information.

As the number of colors, K, varies over pages, we should use content-adaptive K as the number of
clusters when using clustering algorithms to classify pixels. Otherwise, with fixed K, the unexpected
underfitting and overfitting issues likely occur.

To compute a content-adaptive K, we follow the strategy in [Yang et al. 2015] with some modifi-
cations. In [Yang et al. 2015], K is estimated by minimizing a function that assesses the quality of a
candidate clustering. That is, the expected/appropriate K should correspond to the best clustering qual-
ity. Our proposed method first selects a subset of foreground pixels corresponding to S′(x, y) < κ and
clusters them into different groups. Then, the clustering quality is measured using the Davies-Bouldin
method [Davies and Bouldin 1979]. Finally, we compute K as

K =
⌈
(Kkmeans +KEM)/2

⌉
. (10)

where Kkmeans and KEM are the optimal cluster number K corresponding to good clustering quality,
when using K-means and the EM algorithm for the Gaussian mixture model to perform clustering.
Kkmeans is estimated as

Kkmeans =

{
d(K+ +K−)/2e+ 1 if |K+ −K−| ≤ 3

K+ + 1 otherwise
, (11)
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where K+ and K− denote the indices of the first and second minimum elements of {DBK̃ : K̃ ∈
[Kmin, Kmax]}. Kmin and Kmax define the range of K; that is, the number of colors that one manuscript
page generally uses. We fix Kmin = 1 and Kmax = 7. |K+ − K−| ≤ 3 in Eq. 11 means that both K+

and K− should be reliable due to their small difference and thus should contribute to Kkmeans. The
computation procedure for its corresponding KEM is analogous, so we omit the details.

Two noticeable changes to the original method presented in [Yang et al. 2015] are (i) that we combine
both the k-means and EM clustering algorithms to compute the expectedK in Eq. 11, while [Yang et al.
2015] uses each individually and (ii) that we use an improved equation 11 to compute Kkmeans.

5.2 Feature Clustering and FCL Extraction

The clustering algorithms used include the k-means, SVM and EM algorithm for the Gaussian mixture
model. FCL are extracted according to the binary mask image I, which is derived from combining
all the binary mask images {I1, I2, . . . , I8} that are produced based on the results of these clustering
methods. Each zero-valued pixel in each mask image corresponds to a unit/element of a FCL. The
algorithmic details are described as follows. Note that we shall only consider the foreground pixels in
the following unless otherwise stated.

Mask Image I1. To compute the first binary mask image I1, we apply the k-means algorithm with k =
K (computed using Eq. 10) clusters to classify the image pixels, resulting in K groups. However, since
the computed K could be inaccurate, the clustering results may be not satisfactory and consequently
the cluster labels may have to be amended [Yang et al. 2015]. We update K following [Yang et al. 2015].

To distinguish the text and FCL pixels, we take into account the two observations: (i) generally there
are significantly more text pixels than FCL ones and (ii) the text pixels are associated with larger
matching scores. Considering the pixels with the matching score S′(x, y) ≥ κ = 0.85, we respectively
count the number of occurrences of each label in {1, 2, . . . ,K} for these pixels to produce the count set
{n1, n2, . . . , nK}. With the observation in mind, we can thus assume that the text has been assigned
the label

i∗ = arg max
i

{ni}. (12)

and hence that the pixels without the label i∗ are the elements of FCL.
The binary mask I1 is produced as follows. We first initialize it with ones. Next, we perform I1(x, y) =

0 if and only if its label is not i∗, i.e., it belongs to the set {1, 2, . . . ,K} − {i∗}. This way, I1(x, y) = 0 is
expected to correspond to the FCL pixels, while I1(x, y) = 1 is for the text and background pixels.

Mask Image I2. The computation process for the second mask image I2 is exactly the same as for I1,
except that we use the EM algorithm rather than the k-means method.

Mask Image I3. To generate I3, we combine both the k-means and SVM clustering algorithms. That
is, we employ the clustering results resulting from k-means to assist the SVM training. First, the k-
means algorithm with K clusters is first applied to classify the image pixels. Next, we train a SVM
classifier with Radial Basis Function (RBF) kernel using the features computed in Section 5.1 and
k-means based clustering labels. In our experiments, the training pixels include those that correspond
to S′(x, y) < κ = 0.75 (likely non-text pixels) and half of those pixels (likely text pixels) that have
S′(x, y) ≥ κ = 0.85 and the label i∗. The half pixels are randomly chosen.

After the SVM-based classifier has been computed, we perform pixel classification and subsequently
produce I3, following the strategy as mentioned in the I1 computation.

Mask Image I4. Simply replacing the k-means algorithm with the EM algorithm for computing I3 will
yield the fourth binary mask image I4.
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Mask Image I5. To compute the fifth mask image I5, we combine the k-means, EM algorithm and SVM
together. To train a better SVM classifier, we utilize the first two algorithms with K clusters to identify
more reliable training pixels. A pixel is deemed as reliable if the two labels from the two unsupervised
methods are corresponding to each other. Note that there is no need for the two methods to assign the
same label to the pixel, i.e., label consistency is not required.

Since the labels from the two unsupervised algorithms may not be consistent, we first need to com-
pute Σ, which is composed of a set of label correspondences. In other words, the task is to find a
permutation of the k-means labels (EM labels) so that the permuted labels correspond to the EM la-
bels (k-means labels). Let {nkmeans

1 , nkmeans
2 , . . . , nkmeans

K } and {nEM
1 , nEM

2 , . . . , nEM
K } denote the numbers of

occurrences of each k-means and EM label of the training pixels, which are obtained using the same
way as used for computing I3. Assuming the k-means label i corresponds to the EM label i′, then their
occurrences nkmeans

i and nEM
i′ are expected to be similar; that is, the difference |nkmeans

i − nEM
i′ | should

be small. Computing the differences between any two elements in {nkmeans
1 , nkmeans

2 , . . . , nkmeans
K } and

{nEM
1 , nEM

2 , . . . , nEM
K } yields a K ×K dissimilarity matrix M

M(i, j) = |nkmeans
i − nEM

j |. (13)

A good label correspondence is found if the sum of all its dissimilarities is small. In our case, the aim
is therefore to find a constrained minimum assignment through column and/or row permutation to
minimize the trace of M. Mathematically,

minimize trace(M)

subject to arg max
i

{nkmeans
i } ↔ arg max

i
{nEM

i }
, (14)

where↔ stands for a correspondence between two labels. The constraint in Eq. 14 reflects our assump-
tion that there are more text pixels in the training set and thus that their labels should correspond to
each other. To solve this optimization problem, various optimization algorithms, such as [Stošić et al.
2011], can be used. We in this paper use the Hungarian algorithm [Kuhn 1955], which results in a set
of label correspondences Σ.

Given Σ, we carefully prune the pixels in the training set with the aim of obtaining more reliable
training pixels for improved training and hence better clustering. For each pixel in the original training
set, we find both its k-means and EM labels, denoted by ikmeans and iEM. If (ikmeans, iEM) ∈ Σ, this would
indicate that (ikmeans, iEM) is a pair with label consistency and that ikmeans is corresponding to iEM, so
that we consider it as a training-reliable pixel and then add it to the new training set. Otherwise, we
ignore it if (ikmeans, iEM) /∈ Σ. Finally, with the new training data and their labels, we obtain I5 using
the same way the mask I3 is computed, but the only difference is to use the new training data.
Mask Image I6. The sixth mask image I6 might be produced, depending upon if the number K of clus-
ters needs to be updated when computing I1. That is, if the k-means-based labels require amendment,
the K computed by Eq. 10 needs to be updated accordingly and hence we will produce I6. Let Kkmeans

new
(Kkmeans

new < K) denote the new number of clusters. Given Kkmeans
new as the input, we just go through the

same procedure as we compute I3, yielding I6.
Mask Image I7. Similarly, we check if there are any incorrectly labeled pixels by the EM algorithm,
and if so, compute the new cluster number KEM

new (KEM
new < K). Next, the seventh mask image I7 can be

produced in the same way I4 is computed using KEM
new instead of K.

Mask Image I8. We generate the eighth mask image I8 following the same strategy as used for com-
puting I5. Since the process of producing I5 involves the label correspondence/matching, the number of
the unique k-means-based labels must be equal to that of the unique EM algorithm-based labels. This
would mean that I8 will be generated if and only if Kkmeans

new = KEM
new < K.
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Final Mask Image I. The final binary image I is constructed after combining all the existing masks
{I1, I2, . . . , I8}. Specifically, I is computed by comparing the numbers of the pixel values 0 and 1 as
follows:

I(x, y) =

0 if
∑
i

(Ii(x, y) == 1) <
∑
i

(Ii(x, y) == 0)

1 otherwise
. (15)

Notice again that {I6, I7, I8}may not exist and also that a background pixel at the position (x, y) is not
considered as an FCL pixel so that Ii(x, y) = 1 and hence I(x, y) = 1, ∀i ∈ {1, 2, . . . , 8}.

It is worth mentioning here that we have observed that the amount each mask image Ii contributes
varies over pages, indicating that that it is not reasonable to claim Ii is consistently better than Ij in
terms of pixel classification. Moreover, presented above is just an efficient strategy for generating I, but
we do not focus on investigating and comparing other possible strategies that may use {I1, I2, . . . , I8}
in a different manner.

Given the final binary mask I, we are able to extract FCL from it. In other words, FCL are considered
as those connected components of I that satisfy the constraints described in [Yang et al. 2015].

6. EXPERIMENTAL RESULTS

In this section, we perform a comprehensive evaluation of the proposed algorithms on a public dataset
with 1819 images of pages of 7 different manuscripts from the Yale Universitys Beinecke Rare Book
and Manuscript Digital Library [Beinecke 2014a], the Oxford Universitys Bodleian Library and the
Walters Art Museum. The dataset is available to download at [Beinecke 2014b]. The data are very
heterogeneous, in terms of layout structure (e.g., number of columns and text density), conservation
(e.g., ageing, ink bleed-through and noise), acquisition resolution and writing styles. We implemented
these algorithms using MATLAB, C++ and the OpenCV library [OpenCV 2013]. The computational
time depends on the dimensions of the test images. For a 3128 × 2274-sized image, our non-optimized
implementation takes approximately 11 seconds, 12 seconds and 3.5 minutes respectively to extract
text blocks, text lines and FCL on a PC running on an 8 Intel Core i7-3630QM CPU 2.40GHz processor
with 12GB memory.

6.1 Evaluation Methodology

We evaluate the performance of our algorithms in both pixel-level and object-level. Like [Pintus et al.
2014], we report the results in Precision and Recall values, given by:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

, (16)

where TP, FP and FN indicate true-positive, false positive and false-negative, respectively. Note that
we take into account all pixels when computing TP, FP and FN for pixel-level evaluation.

By pixel-level, we mean that we consider pixel classification accuracy when computing TP, FP and
FN. In doing so, we compare the results automatically generated by the proposed algorithms against
a ground truth dataset. To create the ground truth data, we, for each algorithm proposed, randomly
select 5 images from each manuscript, forming a dataset of 105 images. Next, we obtain a single binary
mask by manually segmenting each image in the dataset into either text blocks, text lines or FCL.
Fig. 6 shows our manually produced ground truth masks for an example image. It is worth mentioning
here that the pixel-level based evaluation strategy is only practical for a small set of images (105 in
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Fig. 6. Illustration of the manually created mask images for evaluating text block computation algorithm (middle) and FCL ex-
traction algorithm (right) for an example manuscript page image (left). Manuscript images courtesy of the Yale University [Bei-
neckeMS360 ].

our experiments), since the ground truth data for the test data used in the experiments is not available
yet and also since creating them is a very tedious and time-consuming process.

Given a ground truth mask Pman and its corresponding mask Pauto resulting from one of our algo-
rithms, we analyze the pixel value pairs (Pman(x, y),Pauto(x, y)) at each position (x, y). That is, TP, FP
and FN correspond to (0, 0), (1, 0) and (0, 1), respectively.

By object-level, we mean that TP, FP and FN are computed based on the object classification accu-
racy, which is obtained by visually assessing the automatically-generated results. As these results are
visualized by drawing rectangles or lines, we just need to go through all the test images to perceptu-
ally verify the result correctness and obtain the resulting TP, FP and FN. For instance, to evaluate
the FCL results, we presented them to two users, who were asked to give the TP, FP and FN. In or-
der for an extracted FCL to be deemed as TP, there must be more than 80% overlap between it and
its corresponding rectangular box. Notice that the object-level evaluation emphasizes the capability
of successfully detecting the objects (text block, text lines and FCL) rather than the pixel-level detec-
tion accuracy. Although this strategy is a binary judgment (correct or incorrect) [Pintus et al. 2015], it
makes extensive validation possible while efficiently evaluating the algorithm performance.

It is worth mentioning that the groundtruth data for the whole dataset is not available yet and
also that creating the groundtruth data, though very useful, for such a big dataset is not considered
a contribution of our work. Thus, we can only create the groundtruth data for a small portion of the
dataset, which were randomly selected to avoid biased selection.

Another important reason of performing evaluation on groundtruth data is to demonstrate that the
results by object-level evaluation (used for extensive evaluation when groundtruth data is not avail-
able) are reliable. Indeed, by comparing Tables II and III, Tables IV and V, and Tables VI and VIII, we
can see that the results by pixel-level evaluation match well with those by object-level evaluation, indi-
cating we would expect similar results when evaluating on the groundtruth data for the whole dataset.
Therefore, even though the groundtruth data we tested on is for 105 images, the results obtained on
them can still reliably reflect the overall performance of the proposed methods.

6.2 Text Block Computation Results

We applied the text block computation algorithm to the randomly selected 35 images with 42 text
blocks. As we can see from Table II showing the resulting pixel-level evaluation results, the proposed
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Table II. Pixel-level evaluation results for text block computation.
Manuscript Name Blocks TP FP FN Precision Recall

BeineckeMS10 5 9.54× 106 7.54× 104 5.62× 105 99.22% 94.44%
BeineckeMS109 5 4.05× 106 4.13× 104 1.57× 105 98.99% 96.27%
BeineckeMS310 5 2.97× 107 6.10× 105 4.10× 105 97.99% 98.64%
BeineckeMS360 5 5.28× 106 8.24× 104 1.56× 105 98.46% 97.13%

Osborna44 5 8.22× 106 2.09× 105 4.45× 105 97.52% 94.86%
BodleianMSBodley850 12 3.34× 106 1.97× 105 1.57× 105 94.42% 95.50%

Walters34 5 1.82× 107 5.24× 105 1.19× 106 97.20% 93.85%
# Manuscripts – 7 42 7.83× 107 1.73× 106 3.04× 106 97.84% 96.26%

Table III. Object-level evaluation results for text block computation. We compare these results
against those obtained by the state-of-the-art method [Pintus et al. 2014].

Manuscript Name Blocks TP FP FN Precision Recall
[Pintus et al. 2014]/Our [Pintus et al. 2014]/Our

BeineckeMS10 173 173 0 0 NA/100% NA/100%
BeineckeMS109 250 246 1 4 91.01%/99.60% 98.83%/98.40%
BeineckeMS310 277 275 4 2 94.56%/98.57% 90.06%/99.28%
BeineckeMS360 370 370 0 0 67.26%/100% 97.17%/100%

Osborna44 470 467 2 3 77.73%/99.57% 95.25%/99.36%
BodleianMSBodley850 457 447 22 10 NA/95.31% NA/97.81%

Walters34 48 40 0 8 NA/100% NA/83.33%
# Manuscripts – 7 2045 2018 29 27 82.64%/99.01% 95.33%/96.88%

Fig. 7. Block computation results for several example page images, which are respectively from BeineckeMS10, BeineckeMS109,
BeineckeMS310, BeineckeMS360, Osborna44 and BodleianMSBodley850 (from left to right). The two rightmost images show
pages from the BodleianMSBodley850 manuscript. The green and red rectangles show the results before and after text block
refinement. Manuscript images courtesy of the Yale University [BeineckeMS10 ; BeineckeMS109 ; BeineckeMS310 ; Beineck-
eMS360 ; Osborna44 ] and the Oxford University [BodleianMSBodley850 ].

algorithm can achieve very satisfactory results, with an overall precision value of up to 97% and a
recall value of up to 96%.

By contrast, we also evaluated the algorithm on all the test images with 2045 text blocks in order to
further demonstrate its efficiency. After visually checking the results, we list the numerical statistics
in Table III. It is easy to see from this table that we can achieve up to 99% precision and 96% recall.

To visualize the detected text blocks, we draw the rectangles over their own images. Fig. 7 illus-
trates the text block computation results for few example images from 7 physical appearance-distinct
manuscripts. This figure demonstrates that we are able to identify the unwanted image parts from the
coarse text blocks and remove them to produce the satisfactory refined blocks. Moreover, the rightmost
image shows that the proposed method is still successful even when used to detect the text blocks with
a few text lines. From these results produced on the massive number of page images, we can conclude
that the proposed method is capable of automatically extracting text blocks.
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Table IV. Pixel-level evaluation results for text line segmentation.
Manuscript Name Lines TP FP FN Precision Recall

BeineckeMS10 60 9.23× 106 4.55× 105 1.33× 106 95.30% 87.41%
BeineckeMS109 100 4.06× 106 5.54× 105 5.43× 105 87.99% 88.20%
BeineckeMS310 88 1.28× 107 6.50× 105 2.29× 106 95.17% 84.82%
BeineckeMS360 110 4.89× 106 4.73× 105 5.34× 105 91.18% 90.15%

Osborna44 90 7.76× 106 6.86× 105 8.21× 105 91.88% 90.43%
BodleianMSBodley850 220 3.43× 106 2.57× 105 3.86× 105 93.03% 89.89%

Walters34 91 4.35× 108 2.29× 106 4.72× 106 99.48% 98.93%
# Manuscripts - 7 759 4.77× 108 5.37× 106 1.06× 107 98.89% 97.83%

6.3 Text Line Segmentation Results

Table IV reports the text line segmentation results obtained from applying the proposed method to
the randomly selected 35 images with 759 lines. From this table, we are able to achieve the precision
and recall values as high as 98% and 97% across the manuscripts tested. However, due to the skew
introduced during document scanning (see Fig. 8), the text lines have inclinations with respect to the
horizontal lines. This is in conflict with our assumption that they are parallel to the horizontal lines,
hence making the precision and recall by the text line segmentation algorithm smaller than those by
the text block computation approach. For improved results, we can apply the de-skewing algorithms to
pre-process the images before using our method.

Table V. Object-level evaluation results for text line segmentation. We compare these results against those
obtained by the state-of-the-art methods [Pintus et al. 2015; Pintus et al. 2014].

Manuscript Name Lines TP FP FN Precision Recall
[Pintus et al. 2015]/[Pintus et al. 2014]/Our [Pintus et al. 2015]/[Pintus et al. 2014]/Our

BeineckeMS10 2076 2076 2 0 100%/NA/99.90% 99.90%/NA/100%
BeineckeMS109 4652 4586 21 66 98.64%/97.48%/99.54% 97.73%/99.00%/98.58%
BeineckeMS310 5264 5161 83 103 98.64%/95.24%/98.42% 97.73%/99.00%/98.04%
BeineckeMS360 8162 8044 0 118 98.61%/92.09%/100% 98.23%/98.19%/98.55%

Osborna44 9317 9134 29 183 99.96%/97.07%/99.68% 90.37%/99.03%/98.04%
BodleianMSBodley850 9695 9409 12 286 NA/NA/99.87% NA/NA/97.05%

Walters34 681 607 6 74 99.92%/NA/99.02% 95.18%/NA/89.13%
# Manuscripts – 7 39847 39017 153 830 99.17%/95.47%/99.61% 96.79%/98.81%/97.92%

In addition, we apply the algorithm to all the test images, which have a total of 39847 text lines.
Table V summaries the object-level evaluation results obtained from visual inspection. Again, the
algorithm yields up to 100% precision and recall for some manuscripts, exhibiting very satisfactory
performance.

Fig. 8 visualizes the line segmentation results for a few images. As this figure shows, the proposed
method is successful in segmenting the text lines, even if the pages are seriously degraded with low
quality.

6.4 FCL Extraction Results

To evaluate the performance of the FCL extraction algorithm, we first apply it to the random 35 images
with 357 FCL. Table VI shows that in this environment the average pixel-level precision and recall
accuracies can reach as high as 98.71% and 96.93%, respectively. Nevertheless, the pixel-level results
do not explicitly indicate the accuracy of successful FCL extraction because we cannot infer from them
how many FCL have been successfully detected.

In Table VII, we compare the pixel-level based results obtained from using the individual masks
{I1, I2, ..., I8} and their combination I for FCL extraction. The results indicate that I1, I2, I5, I6 and I8
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Fig. 8. Text line segmentation results for several example page images, which are respectively from BeineckeMS10, Beineck-
eMS109, BeineckeMS310, BeineckeMS360, BodleianMSBodley850 and Osborna44 (from left to right). Manuscript images cour-
tesy of the Yale University [BeineckeMS10 ; BeineckeMS109 ; BeineckeMS310 ; BeineckeMS360 ; Osborna44 ] and the Oxford
University [BodleianMSBodley850 ].

Table VI. Pixel-level evaluation results for FCL extraction.
Manuscript Name FCL TP FP FN Precision Recall

BeineckeMS10 17 1.02× 106 3.38× 104 5.66× 104 96.79% 94.83%
BeineckeMS109 37 6.51× 105 2.53× 105 2.96× 104 72.01% 95.65%
BeineckeMS310 77 2.89× 106 2.66× 105 2.08× 105 91.57% 93.29%
BeineckeMS360 50 5.12× 105 2.33× 104 1.73× 104 95.65% 96.73%

Osborna44 41 1.10× 106 1.34× 105 6.31× 104 89.11% 94.58%
BodleianMSBodley850 90 5.05× 105 6.27× 104 6.33× 104 88.94% 88.85%

Walters34 45 3.03× 107 3.95× 105 4.96× 105 98.71% 98.39%
# Manuscripts – 7 357 3.70× 107 1.17× 106 9.34× 105 98.71% 96.93%

Table VII. Comparison of pixel-level evaluation results obtained from using
the individual masks {I1, I2, ..., I8} and their combination I8 for FCL

extraction.
Mask Name FCL TP FP FN Precision Recall

I1 312 6.29× 106 1.04× 106 0.83× 106 85.78% 88.32%
I2 312 6.26× 106 1.18× 106 0.87× 106 84.17% 87.83%
I3 312 6.69× 106 3.19× 106 0.43× 106 67.70% 93.97%
I4 312 6.64× 106 3.37× 106 0.48× 106 66.29% 93.26%
I5 312 6.36× 106 1.25× 106 0.76× 106 83.62% 89.32%
I6 312 1.70× 106 0.31× 106 0.37× 106 84.53% 82.06%
I7 312 1.40× 106 0.54× 106 0.12× 106 72.35% 91.97%
I8 312 1.28× 106 0.36× 106 0.25× 106 77.98% 83.90%
I 312 6.68× 106 7.73× 105 4.38× 105 89.63% 93.85%

provide similar Precision and Recall values. Although I3, I4 and I7 each have relatively lower Precision,
they can offer higher Recall. On the other hand, just as expected, using the mask I, which is the
combination of {I1, I2, ..., I8}, yields the best Precision and Recall values than using any individual
mask Ij , 1 ≤ j ≤ 8 does.

By contrast, Table VIII reports the precision and recall rates of successful FCL extraction from all the
1819 images with 13668 FCL. Although the pages of these test manuscript, especially the manuscript
BeineckeMS109, contain a great deal of noise and are of very low quality, our approach still achieves
very desirable performance.

We visualize the detected FCL for several images in Fig. 9. Notice that it is quite challenging to
extract all the FCL from the second leftmost and rightmost images since some of them look rather
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Table VIII. Object-level evaluation results for FCL extraction. We compare these results against
those obtained by the method presented in [Yang et al. 2015].

Manuscript Name FCL TP FP FN Precision Recall
[Yang et al. 2015]/Our [Yang et al. 2015]/Our

BeineckeMS10 767 724 20 43 87.82%/97.31% 99.23%/94.39%
BeineckeMS109 1386 1333 115 53 88.55%/92.06% 95.80%/96.18%
BeineckeMS310 2443 2330 112 113 90.02%/95.41% 96.33%/95.37%
BeineckeMS360 3503 3257 13 246 98.36%/99.60% 89.93%/92.98%

Osborna44 3386 3144 118 242 NA/96.38% NA/92.85%
BodleianMSBodley850 1793 1475 62 318 NA/95.97% NA/82.26%

Walters34 390 323 13 67 NA/96.13% NA/82.82%
# Manuscripts – 7 13668 12586 453 1082 91.19%/96.53% 95.32/92.08%

Fig. 9. FCL extraction results for several example page images, which are respectively from BeineckeMS10, BeineckeMS109,
BeineckeMS310, BeineckeMS360, BodleianMSBodley850 and Osborna44 (from left to right). Manuscript images courtesy of the
Yale University [BeineckeMS10 ; BeineckeMS109 ; BeineckeMS310 ; BeineckeMS360 ; Osborna44 ] and the Oxford Univer-
sity [BodleianMSBodley850 ].

similar to the text. Fortunately, the visualization shows that our proposed algorithm is able to extract
all of them, clearly demonstrating its efficiency.

6.5 Algorithm Comparison

We compare our proposed text block computation and text line segmentation algorithms against two
state-of-the-art methods in [Pintus et al. 2015; Pintus et al. 2014] and the FCL extraction method
against [Yang et al. 2015]. As the comparison results listed in Tables III and V show, our approaches
very likely outperform [Pintus et al. 2015; Pintus et al. 2014] in terms of both precision and recall rates.
Moreover, Table VIII indicates that, compared to [Yang et al. 2015], the proposed method provides
higher precision by anywhere between 1% to 10%, as well as comparable recall values.

Regarding applicability, we believe that our per-page based methods can be used in a wider range of
applications because the approaches presented in [Pintus et al. 2015; Pintus et al. 2014] both work on
a per-book basis. The method by Pintus et al. [Pintus et al. 2014] requires the availability of few pages
from the same manuscript in order to train a classifier. By contrast, our methods are all single-page
based with no reference to any other pages.

Fig. 10 illustrates the automatically generated results for some challenging pages. Despite the ex-
istence of noise and/or marginal decorations that can create difficulties, the proposed algorithms still
succeed in correctly extracting the text block, text lines and FCL.

However, our algorithms could yield unexpected results when applied to pages that are composed
of sparse text lines. This is mainly due to the heavy dependence on the text leading H and also the
assumption about the spacing between two text lines. Fig. 11 illustrates an example image for which
the algorithms are not very successful.
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Fig. 10. Results for some challenging pages, which contain a great deal of noise and/or marginal decorations. Manuscript
images courtesy of the Yale University [BeineckeMS109 ; BeineckeMS310 ] and the Oxford University [BodleianMSBodley850
].

Fig. 11. Failure example page. The text height computed by ATHENA [Pintus et al. 2013] is 158, but its real value is 60.
Manuscript images courtesy of the Yale University [BeineckeMS310 ].

Although comparing the proposed methods against other state-of-the-art algorithms allows us to
further evaluate the performance of our methods, to the best of our knowledge, there is one major dif-
ficulty: the vast majority of the previous algorithms are not completely automatic and independent of
the text leading and image resolution. They typically require a parameter set by the user. This manual
tuning, which is not present in our approaches, might add a bias in the comparison and evaluation.

7. CONCLUSION

Given an image of a medieval manuscript page, we present three fully automatic, per-page-based
layout analysis algorithms: text block computation, text line segmentation and special component ex-
traction. Their automation property enables them to be particularly useful for scenarios where many
images need to be analyzed. Moreover, unlike the state-of-the-art methods requiring images of few
pages from the same manuscript to work, our proposed algorithms work on a per-page basis, so that
they can be used in a wider range of applications.
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We carried out an extensive experimental evaluation of the proposed algorithms by testing them on
1819 images of pages of 7 distinct medieval manuscripts. As demonstrated by the results, they can
achieve very satisfactory performance; that is, the overall precision and recall values are as high as
99% and 97%, respectively, for the text line segmentation algorithm. Even for the very changeling task
of extracting FCLs, our method is able to achieve up to a 96% precision rate. The success is attributed
to taking advantage of previous clustering (both unsupervised and supervised) and template matching
techniques, as well as the a priori knowledge (the text leading is H) about the page physical structure.

As a direction for future research, we plan to investigate the analysis methods based on superpix-
els other than single individual pixel. The aim is to make further improvements by regarding as an
independent component each superpixel rather than a single pixel. We will further evaluate the per-
formance of the proposed algorithms by comparing them against other state-of-the-art approaches and
also testing them on other publicly available datasets. In order to make the evaluation easier to per-
form, we have developed a program for creating the ground truth data. This will allow us to conduct
in-depth analysis on the results and hence to design improved algorithmic strategy. Therefore, our fu-
ture work also includes creating ground truth data so that algorithm evaluation can be simplified and
performed without requiring users to manually judge the correctness of results.
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