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Massive digital acquisition and preservation of deteriorating historical and artistic documents is of particular importance due

to their value and fragile condition. The study and browsing of such digital libraries is invaluable for scholars in the Cultural

Heritage field, but requires automatic tools for analyzing and indexing these datasets. We present two completely automatic

methods requiring no human intervention: text height estimation and text line extraction. Our proposed methods have been

evaluated on a huge heterogeneous corpus of illuminated medieval manuscripts of different writing styles and with various

problematic attributes, such as holes, spots, ink bleed-through, ornamentation, background noise, and overlapping text lines.

Our experimental results demonstrate that these two new methods are efficient and reliable, even when applied to very noisy

and damaged old handwritten manuscripts.
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1. INTRODUCTION

Books and manuscripts are being digitized at an increasing rate. In Cultural Heritage this digitiza-
tion activity becomes particularly important. A huge number of historical and artistic documents are
deteriorating day by day, and their digital preservation is required due to their value and fragile con-
dition. Moreover, a digital collection of such documents represents an invaluable database that would
not otherwise be available to the public, whether they are experts, tourists or people keen on art. The
amount and importance of the information contained in this variety of different language manuscripts
motivates the development of tools to explore, read, and enjoy them in a more comprehensive manner.
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Digital libraries from cultural institutions all over the world have yet to be fully exploited for consult-
ing, exchange, remote access and textual search. Dealing with massive databases of thousands of pages
requires automatic techniques to perform per-page analysis and classification. Thus, document layout
analysis plays a significant role, being a fundamental step of any document image understanding sys-
tem. Although some efficient algorithms have been proposed to cope with modern machine-printed doc-
uments or historical documents from the hand-press period, analyzing old handwritten manuscripts
poses additional challenges. These documents (e.g., illuminated medieval manuscripts) are seriously
degraded due to ageing, and greatly differ from the modern machine-printed documents in layout and
formatting. Further, their physical structure, containing text, capital letters, portraits, ornamental
bands and graphical contents, is even harder to extract due to numerous uncontrollable factors, such
as holes, spots, writing from the verso appearing on the recto (ink bleed-through), ornamentations,
background noise, touching text lines, different writing styles, and so forth. The segmentation of his-
torical handwritten documents is still an open research problem, and, to the best of our knowledge, a
completely automatic solution to it has not been reported.

A common problem in document structure analysis is the initial estimation of the text height. While
there are some good automatic techniques to find this value for printed documents with clear and
substantial inter-line spacing, the estimation of text height becomes particularly challenging as the
inter-lines become narrower, and when descenders and ascenders start to touch each other and to fill
the blank space between adjacent text lines (e.g., in medieval manuscripts). In such difficult cases, due
to the ease of manually performing this task, some state-of-the-art techniques [Mehri et al. 2013; Garz
et al. 2012; Journet et al. 2008] require the user to input a rough estimation of the text height, which is
then used to define some algorithm parameters. However, user intervention becomes infeasible when
dealing with massive datasets that contain a high number of different documents and high variability
of text size from one manuscript to another, within the same manuscript, or, even worse, across a single
page or text line. Moreover, applied as a preprocessing step, an automatic estimation of the text height
would make some state-of-the-art existing algorithms completely automatic. For instance, the initial
computation of the text height value is crucial in text line extraction, which is another important topic
in document understanding. Although it has been seen generally as a preprocessing step for layout
extraction, character or word spotting, or handwriting recognition, text line identification is broadly
used as a standalone task, and as a fundamental tool to assist scholars in manuscript transcriptions [T-
pen 2013].

This paper is a significant extension of our Digital Heritage 2013 contribution [Pintus et al. 2013],
which presented a reliable and fast approach to perform an automatic text height estimation. Through-
out this paper we consider the text height as a synonym of text leading. In that paper, given the im-
age of a manuscript page, a multi-scale representation is first produced. Then, for each sub-image at
each level, a new, robust descriptor is computed; this is based on a frequency analysis of the y-axis
projected profile of the normalized image autocorrelation function. Finally, by exploiting spatial con-
sistency between the proposed image descriptors at different scale levels, a voting procedure finds the
predominant spatial frequency in the document page, whose period dimension is the value of the text
height. We showed that this new method is efficient and reliable, even for very noisy and damaged
old handwritten manuscripts; we demonstrated its efficiency on a huge heterogeneous corpus content
with different writing styles, text sizes, image resolutions, and levels of conservation.

Besides supplying a more thorough exposition and evaluation of the text height extraction algorithm,
we provide here significant new material. The main motivation for this extended version is to show
how our previous contribution works with a broader kind of input data (e.g., different languages and
writing styles), and how it could be exploited by integrating it in more general, automatic document
layout analysis frameworks. We present here a robust, parameter-free, automatic pipeline for a per-
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page basis text line segmentation. Given the image of a manuscript page, we first exploit the frequency-
based descriptor introduced by Pintus et al. [2013] to obtain an automatic coarse segmentation mask
of text regions. We refine this segmentation by combining the computed text height value, robust
image features (e.g., SIFT [Lowe 2004]), and machine learning approaches based on Support Vector
Machine (SVM) models. A reliable estimation of pixels belonging to text areas is integrated into a
commonly used framework for extracting lines of text, in order to decrease the chance of false positives
or negatives. Our main contributions are the following:

Automatic coarse text segmentation. We introduce a new operator to perform a coarse seg-
mentation of areas containing text (see Section 6.1). It relies on the same frequency-based descriptor
presented by Pintus et al. [2013] applied here to each pixel at different window sizes; these sizes are
automatically defined by the estimated text height value.

Automatic per-page basis text line extraction. We present a modification of the commonly used
Projection Profile framework, to obtain an automatic extraction of text lines on a per-page basis (see
Section 6.2). We exploit the automatically computed coarse text segmentation, the text height value,
image descriptors, and an SVM classifier with Gaussian radial basis function, to select representative
text pixels only, and use them to perform an adaptive integration along image rows.

Evaluation. We extend the text height extraction evaluation by presenting new results obtained for
different languages (e.g., non-Latin documents) and writing styles. To assess our new contribution we
present a detailed and extensive evaluation of the proposed algorithm for text line extraction, applied
to a large and heterogeneous corpus content with different inter-line distances, noise, ornamentation
and illumination, image resolutions, and levels of conservation.

2. RELATED WORK

Document analysis is one of the most well studied fields in image processing. A huge amount of work
has been presented to deal with different aspects ranging from segmentation [Grana et al. 2009], line
extraction [Jindal and Lehal 2012], char and word spotting [Diem and Sablatnig 2010; Yalniz and
Manmatha 2012], and classification of handwritten documents and medieval manuscripts [Louloudis
et al. 2008; Leydier et al. 2007]. An exhaustive review of the literature is far outside the scope of the
paper, and the reader is referred to the seminal work of Nagy [Nagy 2000], which gives an overview
of early techniques proposed for text segmentation, OCR and background removal, and various recent
surveys [Sharma et al. 2012; Likforman-Sulem et al. 2007]. Here we discuss only the state-of-the-art
techniques closely related to ours.

Integration profiles. Commonly used approaches to determine text height estimation or text line
segmentation are based on Projection Profiles [Bulacu et al. 2007; Shapiro et al. 1993; Antonacopoulos
and Karatzas 2004], the XY-CUT algorithm [Khedekar et al. 2003], and the Run Length Smearing
Algorithm (RLSA) [Wang et al. 2002]. They are all based on different ways to directly integrate the
original image along rows, columns or, rarely, diagonal directions. Based on strong a priori assump-
tions, they have two common main drawbacks: short lines will produce weak signal, and very narrow
lines with overlapping descenders and ascenders will not provide significant signal at all. While these
approaches are mainly used for printed documents, some papers adapted them to handwritten ones
with little overlap between lines and moderately skewed texts [Bar-Yosef et al. 2009; Zahour et al.
2001]. It follows that, although these solutions are typically faster, they are very sensitive to noise,
and not robust enough to be directly applicable to a generic handwritten, possibly damaged medieval
manuscript, with generic layout rules, irregularities in script and writing style, skew, overlapping and
fluctuating text lines. Further, they are not completely automatic approaches, because they require the
user to input some manually defined or text style dependent parameters to avoid local minima in the
analysis of projection profiles [Jain and Namboodiri 2003; Ratzlaff 2000].

ACM Journal on Computing and Cultural Heritage, Vol. 0, No. 0, Article 0, Publication date: January 2013.



0:4 • R. Pintus, Y. Yang, H. Rushmeier

Local descriptors. Recent works perform handwritten text and pattern characterization by ex-
tracting more robust orientation-based features, such as histograms of oriented gradients [Minetto
et al. 2012], Gabor descriptors [Eglin et al. 2007], scale invariant features (e.g., SIFT) [Garz et al.
2010], and an autocorrelation function [Mehri et al. 2013; Journet et al. 2008], which allow them to
analyze the document layout, and estimate similarities and differencies between its regions without
any hypothesis about its physical and logical structure. Moreover, from the autocorrelation function
signal one could obtain the so called Rose of Direction (RoD) [Journet et al. 2005], which makes it
possible to apply a well known local or global skew correction, as an optional additional preprocessing
step. The main issue is that all mentioned techniques require user intervention, either to train some
classifiers [Garz et al. 2010], or to manually set some parameters that are strictly dependent on the
document text height, such as in the case of the neighborhood radius in Garz et al. [Garz et al. 2012], or
the size of kernel windows in Mehri et al. [Mehri et al. 2013]. Although these solutions are very robust
to noise and can cope with non-idealities in the input data, manually adjusted parameters limit the
range of their applicability, and make them unsuitable for a massive, non-homogeneous corpus with
different acquisition resolutions, writing styles and text heights.

Multi-scale representations. Exploiting a multi-resolution representation and a frequency-based
framework is an old and well-known approach in image analysis and segmentation (e.g., [Sabharwal
and Subramanya 2001]), which has been applied to a plethora of applications; generally speaking, it
is used to treat in an adaptive way different kinds of input data, e.g., in terms of resolution and size
of image details. In the specific field of document layout analysis these methods are typically used to
segment document images scanned from newspapers and journals [Qiao et al. 2006; Lemaitre et al.
2008]. Recently, Almeida et al. [Almeida and Almeida 2012] used wavelets to reduce ink show-through
noise in scanned letters or images. Joutel et al. [Joutel et al. 2008] presents a multi-level curvelets
decomposition of ancient document images for indexing linear singularities of handwritten shapes; it
allows for applications such as manuscripts dating, expertise and authentication of its author, style
and period.

Our contribution. The two techniques presented here were inspired by the aforementioned works,
aiming at attaining a completely automatic pipeline for text height estimation [Pintus et al. 2013] and
text line segmentation (novel contribution).

In the text height extraction algorithm, instead of relying on projection profiles directly obtained
from the original image, we compute the y-axis profile of the more robust normalized autocorrelation
function, which proves to be reliable in the presence of noise and other factors such as ink bleed-
through, ageing and damages in old manuscripts. Our method is independent of document brightness
and contrast, and skewed text. Instead of defining some parameter values to deal with local maxima
and minima in the profile, we analyze it by extracting its discrete Fourier coefficients, and by estimat-
ing the most predominant spatial frequency in a parameter-free manner; this results in a text height
estimation that is robust to noise in the projection profile as well. A complete and reliable automatic
solution is achieved by integrating this local image representation into a multi-scale framework, where
a descriptor is computed at different scale levels.

Additionally, we introduce a new technique for automatic text line extraction. Although advanced
methods for text line extraction exist for extreme cases, such as skewed and non-rigid deformed
text [Koo and Cho 2010], handwritten Arabic lines [Shi et al. 2009], and chinese characters [Koo and
Cho 2012], all of them deal with datasets with high contrast between background and foreground, so
that noise is not a problem. As an extended version of our previous paper [Pintus et al. 2013], our
purpose here is to show how our frequency-based descriptor and the evaluation of the text height can
be easily employed within standard document layout analysis approaches. For this reason, a deep and
extensive comparison between this text line segmentation algorithm and the state-of-the-art literature
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is far out of the scope of this paper, and will be addressed in future work. Particularly, we propose here
a modification of the commonly used Projection Profile framework, where we integrate these tools to
provide an automatic, parameter-free extraction of text lines on a per-page basis.

Finally, an extended and extensive evaluation is performed, proving the robustness and reliability
of both the presented methods, and showing that they are well-suited for huge digital libraries with a
high variability of layouts, syles, languages, and levels of conservation.

3. TECHNIQUE OVERVIEW

Fig. 1 and Fig. 2 show the pipelines of the two proposed techniques.
Text height extraction (Fig. 1). The algorithm is given as input an image of a manuscript page

that, without loss of generality, contains a quasi-horizontal text; otherwise, we could apply, as an ad-
ditional pre-processing step, the well-known automatic page alignment correction based on the Rose
of Directions approach [Journet et al. 2005]. First we produce an N -level multi-scale representation;
at level n, we split each original image in 22n small sub-images. Then, we analyze these levels sepa-
retely. For each of their sub-images we compute the normalized autocorrelation function (NACF), and
we integrate this signal to obtain its y-axis projection profile (ypp). We find the main periodicity of the
yppP by applying the Discrete Fourier Transform (DFT). We use the information corresponding to the
highest DFT coefficient from all sub-images to compute, for that particular level n, an estimation of
the text height in terms of probability mass function (PMF). Finally, we exploit the coherence between
levels to find the final estimation of the page text height, by accumulating all the PMFs from all levels.

Text line segmentation (Fig. 2). The input data is an image of a manuscript page containing text,
and the value of the estimated average text height (Fig. 1). First of all, we extract image keypoints,
and the corresponding descriptors from the given image. In parallel, by exploiting the information
of the text height value and by using a frequency-based operator, we perform a coarse text region
segmentation. For each keypoint we try to estimate its compatibility with a text feature; we do this
by comparing its radius (i.e., diameter of its meaningful neighborhood) with the text height value, and
by checking that its position is inside the coarsely segmented region. Accordingly, we assign a label
to each of them (i.e., text or non-text), in order to define whether or not they belong to a text region
and are highly representative of a text character shape. This rough labelling is employed to train a
robust SVM classifier with Gaussian radial basis function kernel. Launching the resulting prediction
on all the original image descriptors we will obtain a refined text region segmentation, sampled at
the keypoints location. Finally we compute the projection profile by integrating only the contribution
of the text keypoints. The size of profile bins, the algorithm to extract the maxima of the profile, and
the final segmentation of each single line, all are strongly dependent of the previously computed text
height value.

4. INPUT DATA

In general, the nature of the input data in the presented algorithms is unconstrained; the only require-
ment is that it is an image of a manuscript page containing text. It can have figures, ornamentation,
capital letters, portraits, touching and overlapping texts, and can be degraded by background noise,
ink bleed-through and other kinds of damage due to ageing. The only mild assumption is that either
the acquisition setup is such that the text is quasi-horizontal, or that a pre-processing step is applied
in order to correct the overall page orientation. This could be easily done by employing the well-known
Rose of Directions method [Journet et al. 2005] or more recent, powerful techniques [Papandreou et al.
2013]; here, in section 7, we also present an additional alternative solution to correct orientation. In
our case, however, since we use operators that are very robust to skewed texts, we will see how this is a
very relaxed constraint, and how typical acquisition setups do not require any alignment correction at
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Fig. 1. Text height extraction - Algorithm pipeline. Given an input image we compute its multi-level representation.
After estimating the text height Probability Mass Function (PMF) for each level, we obtained the final estimation by a voting
framework across all levels. Manuscript image courtesy of the Yale University[BeineckeMS310 ].
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Fig. 2. Text line segmentation - Algorithm pipeline. Given an input image, we extract image keypoints and perform a
coarse text region segmentation. We use the text height value, the radii of keypoints and the coarse segmentation to produce a
rough feature labelling (i.e., text or non-text) and to train a robust SVM classifier. The fine segmentation of keypoints from the
SVM prediction is employed in a projection profile framework to obtain the final text line segmentation. We show two images
with the retrieved odd and even lines of text. Manuscript images courtesy of the Yale University[BeineckeMS310 ]

all. Hence, to produce the results in section 8, we do not use any orientation correction. We don’t need
any a priori information about the language. However, we need to know the main orientation of the
text in the book, whether it is horizontal (e.g., Latin) or vertical (e.g., traditional Chinese). In the case
of vertical orientation, we adapt the algorithm by rotating the image 90 degrees before launching the
process. This information might be a metadata, which can be easily provided with each manuscript.
Another assumption for the text line segmentation is that the page contains only one text block.

5. TEXT HEIGHT ESTIMATION

In this section we explain in detail the text height extraction technique; for illustration purpose only,
we use the sample image in Fig. 3(a) to show all the steps of our approach.

5.1 Multi-scale representation

First, we compute a multi-scale representation of the input image. Considering a particular level n
we split the original image in 22n small sub-images. The number of levels must be fixed; it must be
uncorrelated with the acquisition resolution, and independent of the text height, the layout and the
structure of the manuscript page. We choose this value by relying on the following considerations.

On one hand, since multi-scale analysis is based on consistencies across different levels, it would
seem obvious that the more levels, the more robust the algorithm. On the other hand, given an arbi-
trary high level value, the probability that a sub-image contains one or more text lines tends exponen-
tially to zero. The sub-images that do not contain any spatial periodicity are discarded (as we will see
in detail in the section 5.4) for computational efficiency. We need to choose the number of levels both
as reasonable, general and conservative. With these considerations, and the fact that we are dealing
with handwritten texts, we empirically found that a 5-level multi-scale representation is a reliable
parameter value in all our extensive tests.

5.2 Single level analysis

After building the multi-scale representation, we perform a separate analysis of each level. We start by
computing the normalized autocorrelation function of each sub-image at that level. The autocorrelation
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Fig. 3. Frequency-based descriptor. Given a sample image (a), for each sub-image at each sub level, we compute the nor-
malized autocorrelation function (NACF)(b). We show the NACF integration along x axis to obtain the y-axis projection profile
signal ypp of the top-right sub-image at level 1 (c), and its discrete fourier coefficients (d). Sample image (a) was taken from the
Digital Heritage 2013 conference website[DigitalHeritage ]

function for a two dimensional signal is defined by:

ACF (x, y) =
∑

α∈Ω

∑

β∈Ω

I (α, β) I (α+ x, β + y) (1)

The autocorrelation value at position (x, y) is the sum of the products of the grayscale image values
I (α, β) and the pixel values after a translation of (x, y). These translations are at the basis of the
inspection of the input sub-image according to its different directions. The normalized autocorrelation
function (NACF ) is:

NACF (x, y) =
ACF (x, y)−minACF (x,y)

maxACF (x,y) −minACF (x,y)
(2)

where min and max are the minimum and maximum values of the autocorrelation function. Fig. 3(b)
shows the normalized autocorrelation functions of sub-images at level 1. We can clearly see the differ-
ence between sub-images that contain text lines or figures.

To extract the spatial periodicity of the patterns that correspond to text regions, we compute the
y-axis projection profile ypp = Y PP (NACF ) of the NACF . In Fig. 3(c) we superimpose the NACF
and the profile (white curve) of the top-right sub-image at level 1. We analyze its frequency footprint
by computing the DFT coefficients. After discarding the constant component (i.e., 0-index coefficient),
the coefficient with the highest amplitude corresponds to the predominant spatial frequency. In other
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words, if the coefficient with the highest amplitude has index imax, it means that the signal has imax

periods inside the studied domain. At each level n, we define Aχ
n the maximum coefficient amplitude for

the sub-image χ. After computing the DFT of the profile in Fig. 3(c), in Fig. 3(d) we plot the amplitude
of the first 100 coefficients. The 12th coefficient has the highest amplitude, i.e., the profile in Fig. 3(c)
has 12 periods. For each sub-image, the size in pixels of that period, obtained by dividing the sub-image
height by the number of periods, is a possible candidate value for the text height estimation at that
particular level.

Now we have to merge the information of all the 22n sub-images. In a histogram we accumulate
the amplitude of the 22n most relevant coefficient; each of them is the coefficient with the maximum
amplitude from the corresponding sub-image. Then, in this histogram, the index with the highest
amplitude integral is the winner for the current level. For instance, in Fig. 3(b), those amplitudes fall
into histogram bin 12, while there is only a single amplitude in bin 1. However, due to the discrete
nature of the performed analysis, we do not want to produce a single level value for the text height
estimation. On the other hand, for each level n, we prefer to build the following Gaussian probability
mass function (PMF) of the text height random variable t:

PMFn (t) = wn · e
−

1
2

(t−µn)2

σ2
n (3)

µn =
thmin

n + thmax
n

2
, σ2

n = |thmax
n − µn|

2 (4)

where thmin
n = heightn/ (in + 0.5), thmax

n = heightn/ (in − 0.5), in is the winner coefficient index, and
heightn is the height of the level sub-image. The level-based normalized weight wn:

wn =
1

Cn · widthn

Cn
∑

χ=1

Aχ
n (5)

serves to make the PMFs from different levels comparable. Cn is the number of sub-images at level n
whose coefficients are equal to the winner index in, and widthn is the width of sub-images at level n.

5.3 Multi-level analysis

The result of the previous step is a set of N Gaussian probability mass functions, one for each level.
Each one, with its mean value and variance, gives a per-level estimation of the possible text height
value for the analyzed page. We want to combine all these PMFs, considering the property that sub-
images containing text at different levels produce similar expected values, even if the number of peri-
ods or the corresponding amplidutes are different. In order to exploit this consistency between levels,
we employ a voting framework in which we compute a voting function by accumulating all the PMFs.
The value tE corresponding to the maximum of this function is the final text height estimation for the
manuscript page. Fig. 4(a) shows the multi-level voting function obtained by accumulating PMFs from
the sample image in Fig. 3(a). To validate this estimation, in Fig. 4(b) we show a zoomed region of the
sample image, in which we draw a square with the edge size equal to the corresponding estimated tE .

5.4 Implementation

In this section we describe some implementation details that make the proposed method more robust
and efficient.

First of all, the direct computation of the autocorrelation function as expressed in equation 1 is
computationally inefficient. However, we can use the Plancherel theorem, which allows us to more
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Fig. 4. Multi-level analysis. A voting function is obtained accumulating all the N Gaussian probability mass functions from
all levels (a). The height corresponding to the maximum of this function is the estimated text height (tE ). To check the quality
of the algorithm outcome, a square with edge size equal to tE is drawn over the original text (b). Sample image (b) was taken
from the Digital Heritage 2013 conference website[DigitalHeritage ]

efficiently express the equation in terms of the image Fourier transform [Mehri et al. 2013]:

ACF (x, y) = FFT−1 [FFT [I (x, y)]FFT ∗ [I (x, y)]] (6)

where FFT is the Fast Fourier transform operator, FFT−1 is its inverse and FFT ∗ is its complex
conjugate.

We have found that the contribution of the level 0 to the computation of the final text height is
generally very poor; it would be useful with huge text heights (e.g., text height bigger than half image
height size), but is a very rare scenario we never encountered in our database. Since its analysis is
the most computationally expensive, by discarding that level we obtain a significant speed up without
changing the output result.

Based on the properties of the normalized autocorrelation function and its y-axis profile, we can
apply an outlier pruning strategy in the single level PMF computation step. Image parts that contain
figures do not have a main direction, so their NACF is typically a homogeneous signal with a high value
at the center pixel; its profile is a curve with one high central peak, and a decreasing behaviour as a
function of

∣

∣

1
x

∣

∣. In these cases, the index of the most relevant DFT coeffient is 1 (index 0 is the constant
coefficient), i.e., one period in the studied domain. Since we are looking for spatial periodicities, we
avoid accumulating all these coefficients with index in ≤ 1.

We have found that these implementation choices result in a big improvement both in text height
estimation reliability and in the computational efficiency.

6. TEXT LINE SEGMENTATION

The input data of the text line segmentation pipeline consists in an image of a manuscript page (see
Section 4 for further details), and the value in pixels of the estimated average text height for that
page. As preprocessing steps, we first extract image keypoints and their corresponding descriptors,
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(a) (b)

Fig. 5. Automatic coarse text segmentation. a) the original image of a manuscript page; b) the coarsely segmented text
obtained with the proposed new operator, which relies on the frequency-based descriptor presented by Pintus et al. [2013].
Manuscript image courtesy of the Yale University[BeineckeMS310 ].

and then we perform an initial coarse segmentation of text regions in the page. In this work we use
SIFT features (Scale-Invariant Feature Transform) [Lowe 2004].

6.1 Automatic coarse text segmentation

Both the knowledge of the average text height value tE and the frequency-based analysis introduced in
section 5 allow us to build an operator to coarsely estimate the likelihood of a pixel to belong to a text
part of a manuscript page. The main insight behind text segmentation is the following.Given a pixel,
we consider a window of size ntE centered at that pixel, and we compute the y-axis projection profile of
its normalized autocorrelation function (i.e., ypp as in section 5). After it performs a frequency analysis
of that profile, if the pixel happens to lie in a text region, the maximum coefficient index i of the
Discrete Fourier Transform (DFT) will likely be equal to n. Using only one window, the segmentation
is not robust enough, so we do the same check with a broader range of integers n in the interval [2, N ].
With the aim at training a classifier, we need a very conservative initial identification of text pixels.
For this reason, each pixel that meets the constraint i = n for all the window sizes will be marked
as text pixel, otherwise we marked it as non-text. We heuristically found N = 5 a reasonable choice
in terms of reliability and computational time, and we used it for all the presented results. In Fig. 5
we show the original image of the page, and the mask after the coarse segmentation; white pixels are
labelled as text, while black as non-text.

6.2 Automatic extraction of text lines

Our algorithm to extract the lines of text in the manuscript page relies on a fine, text-based segmen-
tation of the image features computed in the pre-processing step. We aim here at finding the most
representative keypoints that belong to text characters. The algorithm is given all the SIFT keypoints
for a particular image, and we perform a labelling of those by taking into account the information we
have so far, i.e., the text height value and the coarse mask. For each keypoint we consider its position
in the image and its scale. We mark it as a non-text keypoint both if it lies outside the text region of
the mask, and if its scale is not compatible with the size of the text height. Otherwise, we mark it as
a text keypoint. More precisely, since a feature generally describes only a part of a character, we found
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that the most salient keypoints typically have a size between the 5% and the 25% of the text height; we
choose these fixed constraints in all of our experiments. In fig. 6(a) we show in green the positions of
all the extracted, original image features, while in fig. 6(b) are displayed only those after the pruning;
in a more detailed view (fig. 6(c) and fig. 6(d)) it is possible to see how the algorithm mainly keeps the
most relevant keypoints related to text characters, such as the edges of each single vertical stroke, ver-
tical background space between strokes, or other peculiar text shapes, while it discards the majority of
noisy features from the background (noise in the parchment), and keypoints from pictures, ornaments
or other non-textual parts.

(a) Original SIFT key-
points

(b) Pruned SIFT key-
points

(c) Original SIFT key-
points - A detail

(d) Pruned SIFT key-
points - A detail

(e) Text Keypoints - Fine
segmentation

Fig. 6. Text features. The green dots represent the position of keypoints in the image: a) original keypoints; b) pruned key-
points that lie in the coarsely segmented region, and have a scale compatible with the size of the text height; c) and d) zoomed
regions showing the pruning operation. Finally we show the refined text feature classification in e). Manuscript images courtesy
of the Yale University[BeineckeMS310 ].

However, the resulting keypoint labelling is a rough classification that could contain a certain num-
ber of outliers (both false positives and/or false negatives); this is due to the heuristic and conservative
nature of the allowed feature scale range, and to the previously computed coarse segmentation of text
regions. In our case, we found that the presence of outliers makes the use of linear kernels not suitable
for our problem. Conversely, a Support Vector Machine model (SVM) with Gaussian radial basis func-
tion as kernel proved to be able to better separate the two classes (i.e., text and non-text) in the SIFT
feature vector space. We use a two class C-Support Vector Classification, with a γ value of the gaussian
kernel equal to 1

2σ2 , where σ2 is the variance of the training dataset. Once the SVM is trained, we
produce a refined feature classification by simply launching the prediction over all the original SIFT
descriptors. Then we keep only the keypoints marked as text by the classifier. We show the fine seg-
mented features in Fig. 6(e). The improvement of the refinement step is clearly visible in some parts;
for instance it recovers text keypoints in the first line (the reddish text), and gets rid of those in non-
text regions, such as the side of the big illuminated D champ initial, and the horizontal blue and red
bar on the right of the 11th line.

At this point, in order to extract the text lines, we modify the original projection profile algorithm
[Likforman-Sulem et al. 2007] in two ways: we integrate only the contribution of text keypoints; rather
than considering a one-pixel resolution, we set the bin size of the profile proportional to the known text
height. In fact, in the case of the integration of a sparsely sampled field (the set of keypoint positions),
too small a bin size (e.g., one pixel) will result in a potentially noisy signal, while too big a value will
have a poor resolution, and the information about text lines will be lost. We set this size as a quarter
of the text height, and use this value for all our tests. Finally, we find all the maxima in the profile.
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Some state-of-the-art methods solve this by providing a user defined tolerance to avoid local maxima.
Instead, in a parameter-free context, we assign the text height value to that tolerance. The output of
this pipeline is a list of row coordinates, each for a single line of text. For many applications, such as
computer-assisted transcription, rather than exporting just the text line y coordinate, it is important
to output an entire part of the original image. Thus, for each line we export a sub-image centered at
the text line, with the width equal to the image width. The height is defined by the two minima of the
y projected profile ypp, one above and one below the y coordinate of the line (the maxima), and within
a search interval equal to twice the height. See the output in the right side of Fig. 2.

7. ORIENTATION CORRECTION

The algorithm described above works well for images without strong skew. But in a more general case
where the lines of the texts within images of scanned documents could have a certain amount of skew,
we need to deskew the input images before applying our algorithm. This sub-section describes a simple
but efficient pre-processing step that determines the text skew and orientation.

The main idea is based on the fact that the text within the test images has obvious vertical patterns
with respect to one viewing direction (see Fig. 7(d) and 7(e)). Thus we can calculate the skew angle for
a given input image by detecting the straight lines within it and looking into the statistics of the angles
between these line segments and the x- or y-axis. More specifically, given a test image, we convert it
into a binary image. Note that a number of image binarization algorithms have been proposed [Otsu
1975; Sauvola and Pietikinen 2000] and that we use the method by Otsu et al. [Otsu 1975] in this
paper. After that, we utilize the recent line detection technique by Gioi et al. [Von Gioi et al. 2010] to
detect all the line segments in the binary image. Assuming that (x1, y1) and (x2, y2) are the coordinates
of the two endpoints of the i-th line segment and, without loss of generality, y2 ≥ y1, we define the
angle θi formed by this line segment and y-axis as

θi =























arccos

(

y2 − y1

‖(x2 − x1, y2 − y1)‖

)

if x1 ≤ x2

− arccos

(

y2 − y1

‖(x2 − x1, y2 − y1)‖

)

otherwise

(7)

where ‖·‖ stand for the l2-norm, and θi ∈ [−90◦, 90]◦ is actually the angle between the vectors (x2 −
x1, y2 − y1) and (0, 1). Finally, we build a histogram of all θi with N bins and consider as the image
skew angle θ the angle that corresponds to the peak of the histogram. Let f(αi) be the frequency for
the i-th histogram bin centered at αi degrees. Then the skew angle θ is given by θ = argmax

αi

f(αi). The

sign of θ represents the direction of skew. That is, if θ < 0, we need to rotate the image clockwise by −θ
degrees to make the textlines parallel to the x-axis; otherwise, we make a counter-clockwise rotation
by θ degrees.

8. RESULTS

We tested our algorithm on 34 Medieval manuscripts and 19 Arabic handwritten books (15552 pages).
They are from the Yale University’s Beinecke Rare Book and Manuscript Digital Library [Beinecke
2013b] (a set of scripts is available [Beinecke 2013a] to download a subset of the book database),
the Oxford University’s Bodleian Library, the Florence’s Biblioteca Nazionale Centrale, the Walters
Art Museum, the Admont’s Stiftsbibliothek, the Köln’s Erzbischöfliche Diözesan- und Dombibliothek,
the Ripoll’s Biblioteca Lambert Mata, the St. Gallen’s Stiftsbibliothek, and the London’s Wellcome Li-
brary. Compared to our previous work [Pintus et al. 2013], we add 32 new books with about 8600 more

ACM Journal on Computing and Cultural Heritage, Vol. 0, No. 0, Article 0, Publication date: January 2013.



0:14 • R. Pintus, Y. Yang, H. Rushmeier

pages. In addition, we tested the proposed algorithm for segmentation of lines on a subset of these
books (see Table IV), containing more than 80 thousands text lines. Those books are very different
from each other, in terms of acquisition resolution (see Fig. 7(a)), level of conservation (e.g., noise, ink
bleed-through and ageing), amount of figures and ornamentation, languages and writing styles. Our
technique was implemented on Linux using C++ and the OpenCV library [OpenCV 2013]. Our bench-
marks were executed on a PC with 8 Intel Core i7-3630QM CPU @ 2.40GHz processors, and 12GB
RAM. By exploiting parallel execution of our code on the 8 processors, the average per-page computa-
tional time is about 3 minutes: ∼ 6 seconds for text height, ∼ 1 minutes for the coarse segmentation,
∼ 1 minutes for SVM training, ∼ 1 minutes for the feature classification, and ∼ 8 seconds for text line
extraction.
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Fig. 7. Ground truth evaluation. We consider a 100 image ground truth dataset. All image resolutions and ground truth
text heights are respectively plotted in (a) and (b). The maximum relative error 8 is 14% (c), and corresponds to the square
edge size tE in (d). (e) shows one example of text variability across a single page. Manuscript images courtesy of the Yale
University[BeineckeMS310 ; BeineckeMS10 ].

8.1 Text height extraction

Given an input page, it is very difficult to manually define a correct and unique text height, because
it changes across the single page or even across a single line. Both when it is manually set [Mehri

ACM Journal on Computing and Cultural Heritage, Vol. 0, No. 0, Article 0, Publication date: January 2013.



Automatic Text Height Extraction for Text Line Analisys • 0:15

et al. 2013; Garz et al. 2012] and in our automatic estimation, the reliability of the text height value is
inversely proportional to character size variability. We performed two different kinds of evaluations to
understand if this computed value is below an acceptable error or not.

In the first case, we produced a ground truth dataset; we randomly took 100 images from all the
datasets, with different resolutions (see Fig. 7(a)), text heights (see Fig. 7(b)) and types of manuscript,
and we manually measured the text height for each of them. We then compared those values with the
ones automatically computed by the algorithm. In Fig. 7(c) we plot the relative error of image i as

ǫi = 100

∣

∣tiE − t̃iE
∣

∣

t̃iE
(8)

where tiE and t̃iE are respectively the automatic and manual estimated values. In the plot we sort the
errors in descending order. All the relative errors are under 15%, and in Fig. 7(d) we show the image
corresponding to the highest relative error, in which we have drawn a square of edge size equal to
tiE ; the automatic estimated value well depicts the spatial periodicity of the analyzed text. It has a
reasonable size for a general layout analysis approach [Mehri et al. 2013; Garz et al. 2012]. Further, in
Fig. 7(e) we show how difficult it is for the user to choose a good height value; the spatial text period
in two adjacent lines varies from 140 to 160 pixels, with a difference of about 15% between them. Thus,
a 14% maximum relative error is an acceptable outcome.

(a) (b) (c) (d)

Fig. 8. Visual evaluation. We present some check images, corresponding with acceptable (a)(b)(c) or unacceptable results
(d). Manuscript images courtesy of the Yale University[BeineckeMS10 ] and of the Oxford University[BodleianMSBodley113 ;
BodleianMSBodley850 ].

However, this evaluation is only practical for a small subset of images. We would like to check all
the thousands images in the studied books. This can only be done visually in a computer assisted
framework. Hence, for each image, after computing the text height value tE , the algorithm draws a
pattern of nine squares with edge equal to tE . The original image with these overlapping squares
helps the user to quickly estimate if the analysis result is visually reasonable. To understand the
reliability of such evaluation, in Fig. 8 we show details of some checked images, corresponding with
both acceptable and unacceptable results. We highlight with arrows the squares that were particularly
helpful to us in marking the outcome as a good one. Table I shows a high rate of good estimations; the
majority of the books are over 95% accurate, with some even achieving 100% accuracy. The overall
dataset of 53 books (15552 pages) is over 98% accurate.

Typical pages of illuminated manuscripts are shown in Fig. 9. They contain text in two different
colors, capital letters of different types and sizes, the parchment background, other figures inside the
text and ornaments. The images could also contain the dark acquisition background, and other visible
parts of the book. We present both the original images of the page and one or more highlighted parts,
with a square of edge size equal to the estimated text height tE . This helps demonstrate the conditions
of the whole analysis domain, and to visually appreciate the quality of the output. Although the result
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Fig. 9. Illuminated manuscript pages. We present the original image of the page and two highlighted parts; the squares
have edge lengths equal to the automatically estimated text height tE . Manuscript images courtesy of the Yale Univer-
sity[BeineckeMS310 ].

(a) Ageing (b) Low contrast ink

(c) Skew text (d) Failures

Fig. 10. Challenging samples and failures. These pages are affected by the following imperfections: (a) strong ageing; (b)
low contrast ink; (c) skewed text. In (d) the algorithm fails due to a lack of a predominant spatial frequency. Manuscript images
courtesy of the Yale University [BeineckeMS109 ; BeineckeMS360 ] and the Oxford Library [BodleianMSBodley850 ].

is good, the pages in Fig. 9 are not so challenging, since they are very well preserved and do not contain
any kind of noise. In Fig. 10 and Fig. 11, we present most of the problems that arise when dealing with
very old handwritten manuscripts. The two pages in Fig. 10(a) are affected by significant ageing and
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very bad preservation conditions; the result shows how the proposed frequency-based descriptor is
able to extract the main image directions even at the presence of a very noisy signal. It is also robust
to low constrast signals, as shown in Fig. 10(b), where the ageing makes the ink almost disappear.
Due to the value of these rare books, the acquisition setup is carefully controlled, both to preserve
their integrity, and to produce the best possible digital images. However, some texts can come out non-
horizontal, if the text is skewed relative to the page edges. In our tests we never needed to use an
automatic skew correction, and Fig. 10(c) proves how the proposed technique is able to properly deal
with skewed texts. The multi-scale framework is convenient when we need to cope with other extreme
but common situations, such as a low number of text lines (Fig. 11(a)) or a small percentage of text in
a page with a lot of figures and other non-text elements (Fig. 11(b)). Two extreme cases are presented
in Fig. 11(c); in one case, only a small part of the text is visible, and, in the other, the page is very
damaged and contains a lot of comments written in different styles. We also demonstrate how our
approach is robust to the well known problem of ink bleed-through, which makes the writing from the
verso appear on the recto (Fig. 11(d)). The page on the right in Fig. 11(d) is affected by bleed-through,
it contains very few text lines, a lot of noise and other handwritten signs. Since our method aims at
finding the most predominant spatial periodicity in the page, we have seen that it fails when there are
some concurrent high amplitude frequencies, or in the presence of sparsely inscribed pages. This occurs
when the text is not organized in a regular manner, or, in other words, when the inter-line spacing has
high variability. On the other hand, if the quasi-horizontal text constraint is met, locally skewed text
won’t affect the text height estimation, due to the redundant, global information from the rest of the
image. The failures (bad images) in table I are always similar to those in Fig. 10(d); on the left the bad
estimated text height value clearly depends on the groups of three text lines, while the case of the right
contains both a non-regular text line pattern and an additional comment part in the bottom, written
(perhaps by a different author) with a completely different style. The worst result in table I is due to a
book (BodleianMSBodley920) that contains a large amount of pages with non-regular text layout.

We also tested the proposed text height estimation to non-Latin writing styles, in order to prove its
applicability in a more general framework. In Fig. 12 we show handwritten documents in three dif-
ferent languages, i.e., Andalusian, Kufi and Chinese. In the latter case, Chinese is vertically oriented,
so the images should be tagged accordingly; the algorithm will simply rotate them before computing
text height value. Moreover, table I shows the algorithm performance on 19 arabic manuscripts. These
examples prove our method is independent of the type of language.

Although the automatic text height estimation is just the first important step to building a com-
pletely automatic layout analysis framework, this simple output can lead to some very useful results.
It turns out that the text size measured across all the pages of a single book is somehow consistent,
while the text height estimation for pages without any text is random. By exploiting the text height
and the color statistical distribution (average and variance) across the same book, we can distinguish
between pages that contain text and pages that contain only figures. In table II we show the preci-
sion/recall results after applying this segmentation to books having pages with only figures. The true
positive are the pages well segmented that contain only figures, while the false positive/negative are
bad segmented pages that respectively do not/do contain only figures. In our experiments the recall
value is equal to 1 because we do not have any false negatives. Another possible application could be
a tool that gives scholars an ordered list of pages based on the computed statistical distribution; i.e.,
users can analyze a book by first sorting its pages according to the level of image or text content.

8.2 Text line segmentation

With the same motivation as for the text height, we perform two types of evaluation. First, we ran-
domly took 55 pages (i.e., 5 for each book in table IV), which contain 1019 lines, and we manually
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(a) Few text lines (b) Small percentage of text

(c) Significant damage (d) Ink bleed-through

Fig. 11. Challenging samples. These pages are affected by the following imperfections: (a) few text lines; (b) a small quantity
of text; (c) significant damage; (d) ink bleed-through. Manuscript images courtesy of the Yale University [BeineckeMS310 ;
BeineckeMS109 ] and the Oxford Library [BodleianMSBodley113 ].

Fig. 12. Non-latin manuscript pages. We present the original image of the page and one highlighted part in the case of
non-latin page. From left to right: andalusian [AndalusQuran ], kufi [KufiQuran ] and two chinese writing [ChineseManuscript
b; a]. The squares have edge lengths equal to the automatically estimated text height tE .

segment the lines of text. For each line, we perform a per-pixel comparison between the manually ex-
tracted sub-image and the one automatically computed by our algorithm. For each pixel, we evaluate
(and mark it accordingly) whether it is a true-positive (TP), false-positive (FP) or false-negative (FN). A
true-positive is a correct segmented pixel, a false-positive is a pixel that was extracted from the page
but did not belongs to an actual line (also known as a false alarm), while a false-negative is a pixel that
is not extracted from the page but it belongs to a line (also known as a miss). We then compute the
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Fig. 13. Our technique vs T-pen. A comparison between the proposed automatic text line segmentation method and the
one employed in T-pen [T-pen 2013], a broadly used web service for computer assisted transcription. From left to right: a
page from a manuscript, line segmentation of T-pen, our line extraction. Manuscript images courtesy of the Oxford Univer-
sity[BodleianMSBodley113 ].

corresponding Precision and Recall values as:

{

Precision = TP
TP+FP

Recall = TP
TP+FN

(9)

In this case, the Precision means the probability that a randomly selected retrieved pixel is relevant
(TP), while the Recall is the probability that a randomly selected pixel belonging to a line of text in
the database will be retrieved in a search. Since a manual segmentation is not an exact ground truth,
but has some degree of variability, we perform two different manual segmentations M1 and M2, done
by different people. In table III we compare all the three segmentations (i.e., one automatic A, and the
two manual ones) in a combinatorial manner. For each comparison we take a reference set of pixels
as a ground truth, and another set as a computed data. Our conservative line extraction has a high
Recall value (> 96%), but, as expected, lack some Precision. However, the comparison between M1 and
M2 shows the high variability of manual classification, and the maybe ill-posed problem of defining a
real, unique ground truth.

In order to provide a more extensive evaluation, we launch the algorithm on a big amount of images
(11 books with 80963 lines) in our database, and we perform a visual analysis across the set of subim-
ages, each corresponding to a segmented line of text. Similarly, for each line we evaluate whether it
is a TP, FP or FN. In table IV for each book we report the total number of lines it contains, the TP,
FP and FN, and the resulting Precision and Recall values. As we can see, the modified, automatic and
parameter-free approach based on projection profiles and text height estimation produces Precision

and Recall values that are always above 93%.
One of the most common use of segmented lines of text is to assist users in transcription. As stated

above, although a deep test of our approach against all other research on text line segmentation is
out of the scope of this paper, we want to report a practical comparison between the output produced
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by our method and one from a widely used web service for transcription [T-pen 2013]. In Fig. 13 we
see how our technique works better if the manuscript contains a lot of illumination, ornamentation,
figures and capital letters.
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Fig. 14. Text orientation correction. (a) Angle error. Close-up of an image with angle error of 1.58 degrees (b) and 5.54
degrees (c). Manuscript images courtesy of the Oxford University[BodleianMSBodley113 ].

8.3 Text orientation correction

To evaluate the performance of the method for text orientation correction, we arbitrarily rotated the
100 randomly selected images and applied the method to the rotated images to obtain the skew angles
θ. In this experiment, we fix the number of histogram bins at N = 360. Fig. 14 (a) shows the abso-
lute angle error/difference between the computed skew angles θ and their corresponding groundtruth
rotation angles. From this figure, we see that our orientation correction method is able to find the
skew angle at a satisfactory rate, that is, with an angle error of less than 1.5 degrees, up to 94% of the
time. After comparing the white horizontal reference line in Fig. 14 (b) and the text orientation, it is
clear that the error of 1.5 degrees is trivial and thus absolutely acceptable for practical applications.
Fig. 14 (c) shows a close-up of the image that corresponds to the highest angle error of 5.54 degrees.
Although the error is 5.54 degrees, our method actually outputs the expected skew angle because we
can, upon close inspection, observe that the strokes of the texts are approximately perpendicular to the
white horizontal reference line. In addition, it is worth mentioning here that the proposed text height
estimation algorithm can tolerate a skew of up to 6 degrees (see Fig. 10 (c)).

9. CONCLUSION

We have presented a method to perform automatic text height estimation, with no manual intervention
and user defined parameters, and an automatic framework to extract lines of text in old handwritten
books. We have tested our algorithms on a large heterogeneous corpus of books; the algorithms proved
to be very robust and reliable for very noisy and damaged manuscripts, with different writing styles,
languages, text sizes, image resolutions, levels of conservation, and for those affected by numerous
uncontrollable factors, such as holes, spots, ink bleed-through, ornamentation, background noise, and
touching text lines. Future work will investigate and try to deal with some limitations of the current
methods, such as varying text height in the same page and non-regular text structures. We will study
a more efficient multi-scale approach, e.g., with an adaptive domain refinement based on the local
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normalized autocorrelation output at each node of the multi-level hierarchy. Further, we will inves-
tigate other local image descriptors, as dense sift [Wang et al. 2010] or DAISY [Tola et al. 2010], in
order to understand how those behave with handwritten text and very noisy data. Due to the intrinsic
parallel nature of our analysis, a GPU-based implementation is straightforward, and would make it
more suitable for processing larger databases. We will employ a text block segmentation framework
in order to extract text lines in a more general scenario, e.g., two column layout books, and we will
exploit the redundancy across an entire book to increase the Precision and Recall performances, and
the robustness of the proposed per-page basis algorithm. Finally we will extensively evaluate our text
line extraction compared to the state-of-the-art approaches, and using both our database and publicy
available benchmarks [Antonacopoulos et al. 2009; Antonacopoulos et al. 2013; Stamatopoulos et al.
2013; Kleber et al. 2013].
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Table I. Text height estimation statistics.
Book Name Avg. Resolution WxH Pages Non-text Text Good Bad Time

BeineckeMS310 2886 x 3794 309 32 277 266 (96%) 11 (4%) 12m (2sec/pg)
BeineckeMS10 2324 x 3127 187 13 174 174 (100%) 0 (0%) 4m (1sec/pg)
BeineckeMS109 1822 x 2416 270 19 251 251 (100%) 0 (0%) 4m (1sec/pg)
BeineckeMS360 1654 x 2083 382 11 371 371 (100%) 0 (0%) 3m (0.5sec/pg)
BeineckeMS748 2313 x 3232 8 0 8 8 (100%) 0 (0%) 11s (1sec/pg)
BeineckeMS525 2053 x 2855 46 4 42 42 (100%) 0 (0%) 1m (1sec/pg)
BodleianMSBodley113 5329 x 7487 315 12 303 292 (96%) 11 (4%) 75m (14sec/pg)
BodleianMSBodley850 5370 x 6959 246 16 230 217 (94%) 13 (6%) 41m (10sec/pg)
BodleianMSDouce18 5167 x 7155 534 17 517 505 (98%) 12 (2%) 2h27m (14sec/pg)
BodleianMSGoughLiturg.3 5278 x 6786 257 36 221 219 (99%) 2 (1%) 1h (14sec/pg)
BodleianMSLaudMisc.204 5170 x 7013 286 36 250 246 (98%) 4 (2%) 1h38m (21sec/pg)
BodleianMSliturg.e.17 5237 x 7201 224 13 211 209 (99%) 2 (1%) 36m (10sec/pg)
MarstonMS22 3814 x 2574 121 5 116 116 (100%) 0 (0%) 4m (2sec/pg)
Osborna44 2336 x 3025 483 13 470 463 (98%) 7 (2%) 12m (2sec/pg)
Osbornfa1 3487 x 4240 400 3 397 396 (99%) 1 (1%) 28m (4sec/pg)
Walters34 2050 x 3139 658 78 580 574 (99%) 6 (1%) 12m (1sec/pg)
Walters102 2291 x 3359 222 14 208 208 (100%) 0 (0%) 6m (2sec/pg)
Admont43 2882 x 4347 358 0 358 358 (100%) 0 (0%) 17m (3sec/pg)
Admont23 2815 x 4286 591 0 591 591 (100%) 0 (0%) 27m (3sec/pg)
CologneErzbisch127Ka 3480 x 4491 625 10 615 614 (99%) 1 (1%) 16m (2sec/pg)
CologneErzbisch128Kb 3072 x 3840 400 1 399 399 (100%) 0 (1%) 5m (1sec/pg)
BodleianMSAuctDinf.2.11 4945 x 7126 544 52 492 456 (93%) 36 (7%) 1h46m (12sec/pg)
BodleianMSBodley716 5192 x 7174 524 23 501 489 (98%) 12 (2%) 2h41m (18sec/pg)
BodleianMSBodley861 5324 x 7000 352 31 321 321 (100%) 0 (0%) 1h24m (14sec/pg)
BodleianMSBodley920 5070 x 6940 209 12 197 152 (77%) 45 (23%) 56m (16sec/pg)
BodleianMSDouce231 4317 x 6201 238 22 216 190 (88%) 26 (12%) 47m (12sec/pg)
BodleianMSGoughLiturg.19 3684 x 4573 236 15 221 213 (96%) 8 (4%) 19m (5sec/pg)
BodleianMSLatLiturg.f.21 5249 x 6046 196 16 180 180 (100%) 0 (0%) 34m (10sec/pg)
BodleianMSLatliturg.f.2 4925 x 5764 356 47 309 307 (99%) 2 (1%) 45m (8sec/pg)
BodleianMSLaudLat.4 5117 x 7456 568 22 546 546 (100%) 0 (0%) 2h27m (16sec/pg)
BodleianMSLaudMisc.188 5075 x 6831 620 12 608 598 (98%) 10 (2%) 2h35m (15sec/pg)
FlorenceBibNazCen402Fd 4032 x 2908 175 7 168 168 (100%) 0 (0%) 5m (2sec/pg)
Ripoll078 1944 x 2592 357 0 357 355 (99%) 2 (1%) 2m (1sec/pg)
SanktGallen673Sg 3328 x 4992 248 4 244 244 (100%) 0 (0%) 5m (1sec/pg)
WMS Arabic 1 975 x 773 537 11 526 526 (100%) 0 (0%) 50s (<1sec/pg)
WMS Arabic 6 975 x 732 101 27 74 73 (99%) 1 (1%) 15s (<1sec/pg)
WMS Arabic 8 975 x 772 64 11 53 53 (100%) 0 (0%) 4s (<1sec/pg)
WMS Arabic 18 975 x 732 349 12 337 337 (100%) 0 (0%) 34s (<1sec/pg)
WMS Arabic 20 975 x 716 310 19 291 291 (100%) 0 (0%) 47s (<1sec/pg)
WMS Arabic 22 986 x 686 449 18 431 430 (99%) 1 (1%) 47s (<1sec/pg)
WMS Arabic 24 975 x 635 54 14 40 40 (100%) 0 (0%) 3s (<1sec/pg)
WMS Arabic 26 979 x 738 116 15 101 99 (98%) 2 (2%) 28s (<1sec/pg)
WMS Arabic 29 981 x 760 231 11 220 220 (100%) 0 (0%) 51s (<1sec/pg)
WMS Arabic 31 984 x 773 87 17 70 68 (97%) 2 (3%) 9s (<1sec/pg)
WMS Arabic 34 986 x 693 49 12 37 37 (100%) 0 (0%) 6s (<1sec/pg)
WMS Arabic 35 986 x 793 235 9 226 226 (100%) 0 (0%) 51s (<1sec/pg)
WMS Arabic 46 985 x 744 214 10 204 204 (100%) 0 (0%) 51s (<1sec/pg)
WMS Arabic 49 978 x 1564 370 19 351 351 (100%) 0 (0%) 2m (<1sec/pg)
WMS Arabic 62 986 x 743 142 11 131 131 (100%) 0 (0%) 36s (<1sec/pg)
WMS Arabic 66 986 x 807 197 9 188 187 (99%) 1 (1%) 52s (<1sec/pg)
WMS Arabic 68 986 x 737 36 15 21 20 (95%) 1 (5%) 5s (<1sec/pg)
WMS Arabic 72 989 x 745 141 7 134 133 (99%) 1 (1%) 37s (<1sec/pg)
WMS Arabic 80 987 x 744 325 12 313 313 (100%) 0 (0%) 52s (<1sec/pg)

# books - 53 15552 855 14697 14477 (>98%) 220 (<2%) 24h46m (6sec/pg)
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Table II. Precision and Recall values in the retrieval of those
pages that contain only figures.

Book Name # Figure Pages Precision Recall

BeineckeMS310 23 0.92 1.0
BodleianMSGoughLiturg.3 5 0.45 1.0
BodleianMSLaudMisc.204 16 0.88 1.0
Walters34 26 0.89 1.0

Table III. Text line quantitative evaluation. Classification error of an automatic (A)
and two manual (M1, M2) segmentations.

Reference Data True-positive False-positive False-negative Precision Recall

M1 A ∼ 356Mpixels ∼ 238Mpixels ∼ 9Mpixels 59.95% 97.58%
M2 A ∼ 335Mpixels ∼ 259Mpixels ∼ 11Mpixels 56.46% 96.80%
M1 M2 ∼ 328Mpixels ∼ 18Mpixels ∼ 35Mpixels 94.88% 90.36%

Table IV. Text line segmentation statistics.
Book Name Lines True-positive False-positive False-negative Precision Recall

BeineckeMS109 4616 4511 62 105 98.64% 97.73%
BeineckeMS310 5299 4967 62 332 98.77% 93.73%
Admont23 18855 18528 376 327 98.01% 98.27%
BodleianMSAuctDinf.2.11 7576 7038 273 538 96.27% 92.90%
BeineckeMS10 2086 2084 0 2 100.00% 99.90%
BeineckeMS360 8186 8041 113 145 98.61% 98.23%
MarstonMS22 1512 1484 10 28 99.33% 98.15%
Walters34 8195 7800 6 395 99.92% 95.18%
Walters102 3911 3870 42 41 98.93% 98.95%
Osborna44 9277 8384 3 893 99.96% 90.37%
Admont43 11450 11268 199 182 98.26% 98.41%

# books - 11 80963 77975 1146 2988 98.55% 96.31%
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