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Textured Scene Scene With Edited Materials

Fig. 1. On the left we show a virtual scene textured only with procedural materials generated from pixel map exemplars with our method. On the right
we show examples of the editing made possible by our procedural representation on the wall and floor. We change the brick color and make it deeper and
smoother. We also modify the pavement color variation, its regularity and show broken tiles. These edits are made solely through the parameters made
available by our method. All of the input exemplars used to the generate procedural models are presented in supplemental material.

Procedural modeling is now the de facto standard of material modeling
in industry. Procedural models can be edited and are easily extended, un-
like pixel-based representations of captured materials. In this paper, we
present a semi-automatic pipeline for general material proceduralization.
Given Spatially-Varying Bidirectional Reflectance Distribution Functions
(SVBRDFs) represented as sets of pixel maps, our pipeline decomposes them
into a tree of sub-materials whose spatial distributions are encoded by their
associated mask maps. This semi-automatic decomposition of material maps
progresses hierarchically, driven by our new spectrum-aware material mat-
ting and instance-based decomposition methods. Each decomposed sub-
material is proceduralized by a novel multi-layer noise model to capture
local variations at different scales. Spatial distributions of these sub-materials
are modeled either by a by-example inverse synthesis method recovering
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Point Process Texture Basis Functions (PPTBF) [Guehl et al. 2020] or via
random sampling. To reconstruct procedural material maps, we propose a
differentiable rendering-based optimization that recomposes all generated
procedures together to maximize the similarity between our procedural
models and the input material pixel maps. We evaluate our pipeline on a
variety of synthetic and real materials. We demonstrate our method’s capac-
ity to process a wide range of material types, eliminating the need for artist
designed material graphs required in previous work [Hu et al. 2019; Shi et al.
2020]. As fully procedural models, our results expand to arbitrary resolution
and enable high level user control of appearance.
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1 INTRODUCTION
The appearance of a scene is defined by the interaction between
lighting, geometries and materials. Materials define the way the
light is scattered and absorbed on and within geometries. Despite
progress in material authoring tools, creating a realistic material
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remains time consuming, even for expert artists. To reproduce ex-
isting materials, the Material Acquisition field defines methods for
extracting properties through measurements sampling the material
reflectance at different light and camera positions [Foo 1997]. Lever-
aging the recent progress in lightweight material acquisition, we
propose the first method aiming at generating a procedural material
representation, allowing higher-level editability as well as arbitrary
scale and resolution.Examples of the application and editing of pro-
cedural representations is shown in Fig. 1.
Procedural modeling is now common in professional material

modeling with tools such as Blender or Substance Designer [Adobe
2021]. Procedural models are often represented as graphs of opera-
tions, defining sub-elements of the targeted material. Each of these
operations is procedural, allowing infinite resolution or scale, and
high-level control through modification of parameters.

Recent methods for simplified material acquisition [Deschaintre
et al. 2018, 2019; Dong 2019; Gao et al. 2019; Li et al. 2018a] target the
reconstruction of analytic material maps, which compactly repre-
sent materials, but lack the editability and resolution/scale increase
possibilities offered by procedural representations.

Inverse procedural modeling of materials focuses on the creation
of a procedural material representation from images, or in our case,
from an existing set of analytic material maps. We postulate that
this ill-posed challenge requires division of a material into meaning-
ful components which can be represented as procedures. Recently,
several methods [Hu et al. 2019; Shi et al. 2020] took a first step
by proposing different inverse modeling frameworks to select a
procedural graph among existing models and optimize the nodes
parameters to best match an input texture.
In this paper, we target the challenging task of creating entirely

new procedural models from a set of SVBRDF pixel maps as input,
eliminating the need for pre-existing artist-designed procedural
models. We propose inverting the material modeling process in a
sequential way by hierarchically breaking down the material into
several sub-materials, then fitting their spatial distributions and
material properties with procedures.
Given a material, we hierarchically decompose it into a tree of

atomic sub-materials. The different sub-materials are segmented to
encourage uniform statistical variation through either a user-guided,
Fourier spectrum aware KNN matting approach, or an automatic
instance-based segmentation algorithm. Segmented regions pro-
vide information about local texture statistics and the properties
of different sub-materials. We represent the global spatial distri-
butions of sub-materials with mask maps. Each component of the
tree is then automatically converted to a full procedural model. We
present amulti-layer procedural noisemodel based on random phase
noise [Galerne et al. 2011] to model the appearance of sub-materials
to capture local variations at multiple scales. To procedurally model
global spatial distributions, we propose an optimization-based in-
verse modeling method based on a procedural texture basis func-
tion [Guehl et al. 2020] and random sampling to convert mask maps
to procedures. With the proceduralized sub-materials and their pro-
cedural mask maps organized in a tree, we build a small material
graph by adding optimizable operators. The material graph is opti-
mized in a differentiable fashion based on a rendering loss to better
match the input material.

Our material representation relies solely on procedural compo-
nents, enabling high level editing and arbitrary scale/resolution.
We use an analytic representation as input to reduce the uncer-
tainty inherent in single-picture material acquisition. This allows
our method to seamlessly benefit from progress in lightweight ma-
terial acquisition methods [Deschaintre et al. 2020; Gao et al. 2019].

We show application of our pipeline on a wide range of materials
and define a new taxonomy for material decomposition complex-
ity, highlighting the existing challenges of this ill-posed task. In
summary, this paper presents a novel research direction to create a
procedural representation of general analytical materials without
relying on pre-existing material graphs. Specifically we present the
following contributions:
• We present the first pipeline for semi-automatic generation of
procedural representation of materials. As such, our method
does not rely on a pre-existing library of material node graphs.
• We propose a new spectrum-aware, hierarchical segmenta-
tion method for guided material segmentation.
• We define procedures and their corresponding inverse ap-
proaches to proceduralize sub-materials and their distribu-
tions.
• Weoffer a differentiable rendering-based optimization routine
to match our procedural material to the input material during
reconstruction.
• We define a procedural representation which allows for com-
plex multi-scale edits and arbitrary scale and/or resolution

Our implementation will be publicly available.

2 RELATED WORK

2.1 Material Acquisition
Material acquisition seeks to recover the reflectance properties of
existing surfaces or objects. Our method complements this body
of work since acquired materials are used as input for our pipeline
to create procedural representations. While material acquisition
has challenged researchers for decades as discussed in the excellent
survey by Guarnera et al. [2016], significant progress was achieved
in recent years by leveraging deep learning. In particular, different
methods were proposed to acquire materials from one [Deschaintre
et al. 2018; Li et al. 2017, 2018a,b] or multiple [Boss et al. 2020; De-
schaintre et al. 2019, 2021; Gao et al. 2019; Guo et al. 2020b] pictures
of surfaces or objects. While our approach also targets the creation
of a material representation, we do not seek to recovering material
properties from captured sample(s), but rather to proceduralize an
existing material. This difference not only allows our method to
benefit from material acquisition and its progress, but also to handle
any existing analytical material.

2.2 Texture Synthesis
In our method, we leverage texture synthesis, which creates new
textures with larger scale or higher resolution from an exemplar.
Several surveys provide a comprehensive overview of example-
based texture synthesis [Akl et al. 2018; Raad et al. 2018; Wie et al.
2009]. Texture synthesis can be classified into three families: patch
re-arrangement based, arranging patches available in the original
texture to synthesize a new texture [Efros and Freeman 2001; Efros
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Fig. 2. A simple example of a brick material created using node graphs in
Substance Designer [Adobe 2021]. This material graph is composed by a set
of procedures to generate brick patterns and add details upon them. The
designed material is fully procedural thus can be further edited or expanded
to any resolution.

and Leung 1999; Kaspar et al. 2015], statistics based, estimating
statistics of the original texture and transferring them to a new
texture [Galerne et al. 2011; Galerne et al. 2012, 2017; Gilet et al.
2014; Heeger and Bergen 1995; Heitz and Neyret 2018], and neural-
network-based, reproducing texture or material appearance using
machine learning [Bergmann et al. 2017; Henzler et al. 2021, 2020;
Niklasson et al. 2021; Shocher et al. 2019; Ulyanov et al. 2016; Zhou
et al. 2018]. We use the second family of methods to reproduce the lo-
cal variations of our decomposed atomic components sub-materials.
Alone, these methods can reproduce micro-structures well, but fail
for larger scale patterns. They are also limiting in the scope of pos-
sible editability. But by making use of progressive decomposition,
extending them in a multi-layer fashion and incorporating them
with an optimizable post-processing step, our method can represent
complex SVBRDFs as procedural models with arbitrary scale and
resolution as well as high level editability.

2.3 Procedural Modeling
Procedural models allow artists to retain editability and produce
arbitrary scale and resolution. Specialized procedural models have
been proposed but are limited to specific materials such as wood
or leather and mostly stationary materials [Guo et al. 2020a]. A
more generic option lies in the design software allowing artists to
combine procedures to create a new material (see Fig. 2). While this
procedural representation provides great editability and versatility,
it remains time consuming and challenging, even for expert artists,
to reproduce an existing or imagined material.

Recent methods explore inverse procedural modeling of materials,
aiming at the reproduction of a given material appearance using
a procedural model. Hu et al. [2019] and Shi et al. (MATch) [2020]
both propose different frameworks that leverage existing Substance
graph procedural models and infer their parameters to match the
appearance of input textures. To do so, Hu et al. relies on neural
networks trained for each individual material graph, while Shi et al.
(MATch) relies on gradient descent and a differentiable version of
the Substance Engine. Both of these methods, however, work on the
premise of known pre-existing procedural node graphs, manually

created by artists. This approach requires a large, expressive enough
dataset of procedural graphs to be available and non-trivial search
methods to find the closest ones among hundred of options. As
opposed to these methods, our proposed pipeline, does not require
predefined material graphs and simply relies on a few user scribble,
which typically only require 2 minutes of interaction.

A key component of our inverse procedural modeling pipeline is
the procedural representation of the structure of materials. That is,
the global spatial distributions of decomposed sub-materials, which
we represent using a set of binary mask maps. To preserve the
procedural aspect of our results we need to represent these masks
procedurally. Rosenberger et al. [2009] propose a shape synthesis
method to generate layered control maps but is limited to unstruc-
tured shapes with fractal-like boundaries. Alternatively, we could
use an L-system [Št’ava et al. 2010], but that approach requires
predefined grammars. Rather, we make procedural generation of
structured mask maps possible by proposing a by-example inverse
Point Process Texture Basis Functions (PPTBF) [Guehl et al. 2020]
modeling approach and leveraging random sampling.

2.4 Image Segmentation and Matting
Image segmentation aims at separating an image into different re-
gions, based on some specific criteria. In our material procedural-
ization framework, segmentation is used for partitioning the given
material into several sub-materials. Image segmentation has been
extensively studied in the last decades [Khan 2014], with recent
methods leveraging deep learning [Minaee et al. 2020]. Close to our
challenge are the recent work of Cimpoi et al. and Bell et al. [2015;
2016] which semantically split natural scenes into their different
components (such as wood, plastic, etc.). However, these methods
focus on the segmentation of complete scene images and use con-
text [Bell et al. 2015] to better recognize materials, which is not
available in our material exemplars.

Most existing segmentation methods do not perform well in our
context as they result in significant error on the boundaries between
two sub-materials. We therefore use image matting, originally devel-
oped to segment background and foreground with fuzzy boundaries.
We found alpha matting to better represent the transition between
sub-materials in a SVBRDF and to preserve good quality boundaries,
even after thresholding.
Many methods for image matting suggest affinity-based solu-

tions, solving a Laplacian clustering problem [Aksoy et al. 2017;
Chen et al. 2013; Levin et al. 2008]. Recent work [Cho et al. 2016; Xu
et al. 2017] attempts to learn alpha maps directly using deep neural
networks, but is limited to two-layer (foreground and background)
alpha matting due to available training data. Aksoy et al. [2018]
proposed an improved affinity-based method by combining deep
semantic features with affinity Laplacian. While it supports multiple
layers, it is geared toward natural scene images and requires user
to provide the number of layers. Our decomposition approach of
materials is similar to the one adopted by Lawrence et al. [2006]: we
aim to decompose the input spatially-varying material maps into
regions of similar sub-materials. The approach by Lawrence et al.
was further developed by AppWand [Pellacini and Lawrence 2007],
AppProp [An and Pellacini 2008] and Material Matting [Lepage and
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Lawrence 2011], which introduce segmenting measured or analyti-
cal material images to make them easy to edit. However, in practice,
these approaches seem to handle limited normal variations. More
importantly, they do not target the creation of fully procedural rep-
resentations. They treat the materials as SVBRDF images, limiting
the editing of results to pixelwise (rather than parametric) modifica-
tions of the segmentation and/or uniform (rather than multi-scale)
material editing. Beyond the editing limits, these methods do not
provide for the generation of textures of arbitrary spatial extent.
We choose to build upon KNN matting [Chen et al. 2013] by

proposing a spectrum-sensitive affinity-based imagemattingmethod.
KNN matting supports multiple layers and enables user control to
conveniently define layers of interest, which are useful features
for our material segmentation purpose. The aforementioned mate-
rial segmentation approaches [An and Pellacini 2008; Lepage and
Lawrence 2011; Pellacini and Lawrence 2007] could produce inter-
esting segmentation results, but we chose KNN matting because of
its generality, the availability of its implementation and its efficient
runtime.

3 OVERVIEW
Given a set of SVBRDF maps, we want to generate a procedural
representation of the material. Our inverse procedural modeling
pipeline starts by hierarchically decomposing input SVBRDF maps
into multiple sub-materials (Sec. 4) organized as a tree structure.
Each sub-material represents a statistically similar region and its
local variation, while the associated segmentation masks encode the
global spatial variations of these sub-materials. The tree structure
provides a layered relationship between different sub-materials. We
traverse the material tree to convert each component to their pro-
cedural counterparts. We represent procedural sub-materials with
a multi-layer procedural noise model combining procedural noise
maps (Sec. 5.1) and mask maps using Point Process Texture Basis
Functions (PPTBF) [Guehl et al. 2020] and random sampling (Sec.
5.2). After proceduralization, we compose these procedural repre-
sentations and use a differentiable rendering-based optimization to
match the appearance of the input material (Sec. 5.3). We show an
overview of our method in Fig. 3.

In this paper we demonstrate our method on common physically-
based material parameters, that can be easily acquired using recent
methods [Deschaintre et al. 2020]: albedo maps, normal maps and
roughness maps. As normal maps encode vectors, their channels
represent 3D directions which are difficult to proceduralize. Instead
of directly working in normal map space, we convert to a height map
using Poisson reconstruction [Pérez et al. 2003] a produce a better
proceduralization. Fig. 4 provides an example of this reconstruction.
Our approach can easily handle additional gray-scale or color maps.

4 SVBRDF DECOMPOSITION
The first step of our pipeline is a hierarchical decomposition of the
input SVBRDFmaps into multiple sub-materials in a semi-automatic
way. Although it is possible to spatially decompose SVBRDF maps
into multiple sub-parts in one step, we propose an iterative de-
composition into a material hierarchy, allowing the encoding of a
layered relationship between sub-materials for proceduralization.

Specifically, given a set of SVBRDF maps, we decompose it into mul-
tiple sub-materials using a spectrum-aware matting algorithm (Sec.
4.1), which generates mask maps for each segmented sub-material.
For each masked sub-material, we let the user decide whether to
further decompose it using either our matting algorithm, or a light-
weight instance-based decomposition algorithm (Sec. 4.2). Using
this process, users can define the elements they consider important
in the texture and iterate with new sub-divisions until no salient
sub-material is left, creating a tree structure of decomposed sub-
materials.

4.1 Spectrum-aware SVBRDF Decomposition
We first consider how to decompose a set of SVBRDF maps, into
sub-materials. As classical segmentation [Khan 2014] does not allow
for smooth boundaries, we use alpha matting [Chen et al. 2013].
Inspired by KNN matting, our algorithm allows users to draw a few
strokes to conveniently indicate different regions of interest.
As an affinity-based algorithm, KNN matting [2013] relies on

a feature vector 𝑋 (𝑖) for each pixel 𝑖 of the image to compute an
affinity matrix. For SVBRDF maps, traditionally used features are
albedo color (r, g, b), height (h), roughness (𝛼) and position (x,y):

𝑋 (𝑖) = (𝑟 (𝑖), 𝑔(𝑖), 𝑏 (𝑖), ℎ(𝑖), 𝛼 (𝑖), 𝑥 (𝑖), 𝑦 (𝑖)) (1)

We propose an additional feature, based on the noise spectrum,
enforcing the statistical uniformity expected from decomposed sub-
materials. To distinguish between the differences in local noise, we
take the noise Fourier spectrum into account. Notice that although
position features (𝑥,𝑦) are taken into account, we do not enforce
spatial continuity of the regions because we sample multiple non-
local neighborhoods with different weights of (𝑥,𝑦), to explore
nonlocality (as done in the original KNN matting)
We estimate the local spectrum at each pixel 𝑖 using Welch’s

method [Welch 1967] and reduce its dimensionality to 3 using Prin-
cipal Component Analysis (PCA). We therefore compute the affinity
matrix and matting using a feature vector 𝑋 (𝑖) composed of albedo
color, height, roughness, position and our spectrum estimation.
Alpha matting results in multiple alpha maps which we process

to generate binary mask maps. Each pixel in the image is assigned
to the binary for which it has the highest alpha map value. The
thresholded alpha-matting better represent the transition between
sub-materials than direct segmentation methods. Fig. 5 shows a
comparison between the decomposition results with and without
spectrum features on example textures. In these two images, color
and position features do not provide enough hints to separate two
layers because they are similar in color but differ in noise spectra.
More decomposition results on material maps with user scribbles
can be found in our supplemental document.
Once a material decomposed, we provide the option to further

process each sub-material using the same matting algorithm with
the newly generated mask map(s) as an additional constraint.

4.2 Instance-based Decomposition
As an alternative to a progressive decomposition into sub-materials,
we provide a lightweight solution for instance-based decomposi-
tion. This is particularly useful for repeating materials such as a tile
wall composed of different types of tiles (the input shown in Fig. 6).
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Fig. 3. Our procedural modeling pipeline allows a user to guide the segmentation of an input material to automatically generate a matching fully procedural
material model. On the left we show the procedural tree generated by our method and on the right we show the proceduralization steps taken for each sub
material. We represent the spatial variation using segmentation masks and Point Process Texture Basis Functions to create a procedural version through a
query-and-optimization method. We represent the sub-material parameters with a multi-scale noise matching operation after reparameterizing normals to
height values. Finally we use differentiable rendering to compose all sub-materials into a complete procedural material, rendered here lit from the top. Please
see our supplemental material for a graph visualisation of a few results.

Normal map Height map Normal map*
Fig. 4. Reconstruction of a height map from a normal map. Values on the
height map are normalized between 0 and 1. The Normal map* is computed
from reconstructed height map by a Sobel operator. While the recomputed
Normal map* shows slightly less fine-grain detail, the general structures
are well preserved.

Rather than manually segmenting each different tile, we frame this
as an instance detection and clustering problem, using – in this ex-
ample – the mask map of segmented tiles to extract each instances
of tile. Different instances correspond to disconnected regions in the
mask map segmented from the previous layer in the decomposed
material tree. We then scale each instance to the same size based
on its bounding box. For each instance, we estimate its color his-
togram and local spectrum as features and build a feature matrix for
agglomerative clustering as shown in Fig. 6. The clustering result
allows us to extract the different types of tiles, their frequency and
their sub-material to assign them with a similar frequency in the
procedural model.

5 MATERIAL PROCEDURALIZATION AND
RECOMPOSITION

After decomposing the input SVRBDF maps into a tree of sub-
materials and mask maps, we traverse the tree and convert each
component into a procedural version layer by layer. Finally, we
introduce optimizable parameters during the final recomposition
phase to best match the input SVBRDF.

N
o
spectrum

Input Mask map Layer 0 Layer 1 W
ith

spectrum

Mask map Layer 0 Layer 1 N
o
spectrum

Input Mask map Layer 0 Layer 1 W
ith

spectrum

Mask map Layer 0 Layer 1
Fig. 5. Image decomposition with and without spectrum features. The first
image is a synthetic image while the second image is real-world texture.
User scribbles are visualized as an additional layer superimposed over the
input image, where blue and green scribbles indicate different matting
layers. Matting results with spectrum features (bottom row) are better than
the results without spectrum features (upper row) because color features
here cannot provide sufficient information to separate two layers. Mask
maps generated using spectrum features are also more integrated and less
fragmented.

5.1 Multi-layer Procedural Noise Model
In this section we describe the conversion of the segmented sub-
material into procedural models. Each leaf node in our tree is a
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Input Cluster 0 Cluster 1

Label Map Cluster 2 Cluster 3

Fig. 6. Instance-based decomposition for sub-materials. Instead of manually
segmenting each sub-material, we extract instances in the input texture
and build a feature matrix for each of them. Agglomerative clustering is
then performed on these feature matrices, yielding multiple clusters with
similar sub-materials. Their spatial distribution is visualized as a label map,
where different colors indicate different clusters. Finally, we fit a different
procedural model for each cluster.

sub-material while the intermediate nodes store the mask maps.
Each sub-material is represented by a set of masked SVBRDF maps.
We use a multi-layer procedural noise model to proceduralize their
texture appearance. As our images are masked and incomplete, the
spectrum of the entire image is unavailable, preventing the direct
fitting of procedural noise models using noise synthesis methods
e.g. [Galerne et al. 2011; Galerne et al. 2012; Gilet et al. 2014; Heitz
and Neyret 2018]. While Guingo et al. [2017] propose estimating
local spectra in the valid regions only, their approach cannot capture
the global variation of the noise textures, e.g. when the scale of the
randomness is comparable to the scale of the full image. We lever-
age a similar sliding window approach but propose a multi-layer
procedural model –shown in Algorithm 1– to deal with incomplete
images. Given an input masked image, we decompose it into several
noise layers using a progressive filtering strategy. For each layer,
we filter our input image with a Gaussian kernel. The kernel size
of the filter becomes larger as the number of layers grows, aiming
at capturing larger scale spatial variation. For each filtered layer,
we estimate its local spectrum and convert it to a procedural noise
model similar to [Guingo et al. 2017]. Finally, our algorithm uses
the mean value of filtered image 𝐼 as the base color 𝐶 , and extracts
the final noise layer 𝑁 ← 𝐼 −𝐶 .
This last layer, however, represents the lowest frequency of the

input image, preventing the use of sliding window spectrum esti-
mation. As each sub-material is masked, the full image spectrum
is unavailable. We therefore inpaint the missing data [Barnes et al.
2009; Telea 2004]. To reduce artifacts introduced by this step, we
apply a set of Gabor noises as a basis to approximate the power spec-
trum of the inpainted image [Galerne et al. 2012]. This last step and
our use of multi-layer noise allows our method to produce a fully

ALGORITHM 1: Multi-layer procedural noise model
input : image 𝐼 , maximum number of layers 𝑛𝑚𝑎𝑥 , image variance

threshold 𝜖 , a set of filter kernel sizes 𝐾 , a set of local
window sizes𝑇 , a set of step sizes 𝑆

output :a set of procedural models 𝑝 , base color𝐶
𝑝 ← ∅;
𝑖 ← 0;
while 𝑖 < 𝑛𝑚𝑎𝑥 do

𝜎 ← Variance(𝐼 );
if 𝜎 ≤ 𝜖 then

break;
end
𝐼 ′← Gaussian filter(𝐼 , 𝐾𝑖 ) ;
𝑁𝑖 ← 𝐼 − 𝐼 ′;
𝑝 ← 𝑝 ∪ Random Phase Noise matching(𝑁𝑖 ,𝑇𝑖 , 𝑆𝑖 ) ;
𝐼 ← 𝐼 ′;
𝑖 ← 𝑖 + 1;

end
𝐶 ← mean(𝐼 ) ;
𝑁 ← 𝐼 −𝐶 ;
𝑝 ← 𝑝 ∪ Random Phase Noise matching(𝑁,𝑇𝑛𝑚𝑎𝑥 , 𝑆𝑛𝑚𝑎𝑥 ) ;

Input texture Synthetic texture Base color

Fi
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Layer 0 Layer 1 Layer 2 Layer 3
Fig. 7. Our Multi-layer procedural noise model on a colored texture image.
Black regions shows masked unavailable regions. The color of noise images
are more contrasted for visualization. The synthetic noise (bottom row)
is procedural noise estimated from filtered noise (middle row), and the
synthetic texture (middle image in the top row) is computed by adding all
the synthetic procedural noise together with the base color.

procedural representation of the sub-material’s properties. Fig. 7
shows an example of our multi-layer decomposition on a masked
colored texture image, where each layer captures different levels
of details from an input image and the last layer shows the global
variation of the noise image.
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Input Multi-layer Single-layer
Fig. 8. Comparison between multi-layer and single-layer noise on col-
ored texture images. Compared to a single-layer approach, our multi-layer
method can reconstruct a smoother texture image and capture more fine-
grained details, while the single-layer generates some apparent repetitive
and "dirty" patterns. Textures are segmented by our spectrum-aware matting
method, fitted and recomposed to generate the results.

Using the procedural noise 𝑝𝑖 fitted to each layer 𝑖 and the base
color𝐶 , we reconstruct the original texture as

∑
𝑝𝑖 +𝐶, 𝑖 = 1, 2, ..., 𝑛

where 𝑛 is the number of noise layers. We further improve the
results of this reconstruction for SVBRDF maps by introducing a
differentiable rendering-based optimization scheme, described in
Sec. 5.3. Our approach provides a fully procedural representation
and can reproduce fine-grained details and yield a smoother noise
texture than single layer methods (see Fig. 8). Furthermore, our
multi-layer approach gives users more control over level of detail.

5.1.1 Images with Multiple Channels. Synthesizing colored images,
such as the albedo maps could result in poor color mixing dur-
ing synthesis. Similar to previous approaches [Galerne et al. 2011;
Guingo et al. 2017; Heeger and Bergen 1995], given a multi channel
noise texture, we synthesize it in a PCA color space. We project
the image from the original RGB space to the PCA space, allowing
us to synthesize each channel independently before projecting it
back to the original RGB space. We then match the histogram of the
synthesized image to the input image as a post-processing step to
ensure a matching color distribution.

5.2 Procedural Mask Synthesis
While we represent the sub-material local variations using our multi-
layer noise model, we use mask maps to represent the global spatial
distributions of the sub-materials. Proceduralizing these mask maps
allows us to reach a full procedural representation of the material.

Input Query Optimized
Fig. 9. Examples of our procedural mask synthesis method. Given an input
binary mask map (left) segmented by our spectrum-aware matting method,
we first query a similar mask map (middle) from a database, and use it as
an initialization of our alternating optimization algorithm to correct and
match its structure to the input (right).

With it, we can easily edit, resample and extend the resolution of
the spatial distribution. Similar to sub-material proceduralization,
mask proceduralization is done recursively during traversal of the
material tree. We model mask maps by two methods 1) Point Pro-
cess Texture Basis Functions (PPTBF) [Guehl et al. 2020] to model
decomposed binary mask maps by matting algorithm (Sec. 4.1); 2)
Random Sampling to model decomposed instances (Sec. 4.2).

5.2.1 Inverse Mask Fitting by PPTBF. As introduced in [Guehl et al.
2020], Point Process Texture Basis Functions (PPTBF) are defined
by the sparse convolution of randomly-sampled 2D points xi with a
kernel function being the product between a visual feature 𝑓 and a
blending window𝑤 :

𝑃𝑃𝑇𝐵𝐹𝑘 (x) =
∑

xi∈N𝑘 (x)
𝑓 (x − xi)𝑤 (x − xi), (2)

where N𝑘 (x) = {x1, ..., xk} describes the 𝑘 closest sample points
around x. According to Eq. (2), the behavior of PPTBF depends
on 2D spatial point distribution of xi, visual feature function 𝑓 ,
and blending window function𝑤 , which are in turn controlled by
intuitive parameters such as kernel size, degree of smoothing etc.
to produce a continuous scalar field. After applying a threshold, we
use PPTBF to model binary mask maps segmented by our matting
algorithm. In this section, We first describe the fitting of mask maps
on the top level of the material tree where the mask covers the entire
image, and then discuss fitting maps in the lower hierarchy where
mask contains missing regions.
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As PPTBF is a forward generation process, [Guehl et al. 2020]
did not focus on by-example modeling. The authors suggested an
approach that queries a precomputed PPTBF database and then
optimizes parameters, but did not provide details. We therefore ex-
perimented with different feature representations and optimization
routines and here discuss the techniques we chose. Detailed imple-
mentation of our query-and-optimization method can be found in
our released code.
Query: As PPTBF are not fully differentiable and partly rely on

discrete parameters, starting from a good initialization is particu-
larly important for efficient optimization. We first query a database,
uniformly covering the variations allowed by PPTBF, to retrieve
the nearest neighbor parameters of our input mask. We use the
mask image database provided in [Guehl et al. 2020]. The database
contains 450K images and was generated by non-regular sampling
with three different thresholds for binarization. To measure the
similarity between the input mask and pre-sampled mask maps in
the database, we choose Local Binary Pattern (LBP) to encode local
statistics, Gram Matrix of pre-trained VGG19 [Simonyan and Zis-
serman 2015] deep features for global statistics, and Fourier power
spectrum for regularity. We weight and concatenate these three
features to build a high dimensional vector acting as a descriptor
for binary mask maps. We precompute such a vector for each mask
map in the database, and reduce their dimensionality by PCA to
512 dimensions for a more robust representation. The storage of
the processed database is 7.81 GB in total. We build an acceleration
structure for fast nearest neighbor search based on 𝐿2 distance of
two feature vectors. The precomputation takes around 36 hours, but
each query then requires less than 1 second.
Optimization:After we retrieve a pre-sampled binary mask map

from the database, we use its parameters to initialize our optimiza-
tion algorithm to better match the input mask. Since PPTBF contains
both continuous parameters as well as discrete parameters, we ap-
ply coordinate descent to optimize continuous and discrete ones
alternatively. As evaluation of PPTBF is expensive and not easily dif-
ferentiable, we apply gradient-free approaches to avoid costly finite
differentiation. Our implementation for PPTBF optimization is CPU-
based. For continuous parameters, we apply the Powell method
(SciPy [2020]) and for discrete parameters, we adopt a Bayesian
optimization method with Gaussian Process (GPyOpt [2016]).

As Fig. 9 shows, our query results provide an initial guess about
the general structure but it can be hard to find a perfect match from
the database due to sparse sampling. Our optimization step can
correct the parameters and match the structure of the input image.

5.2.2 Incomplete mask maps. Different from masks at the top layer
of our tree, masks for sub-materials in the lower hierarchy are
masked by higher level masks. If naively processed, this leads to
poor procedural reconstruction of the sub-material distribution.
In order to fit incompletemaskmaps, we propose two solutions. First,
we adjust our optimization by computing losses only for unmasked
pixels between input mask and PPTBF output. Second, we propose
proceduralizing an inpainted version – using PatchMatch [Barnes
et al. 2009] – of incomplete mask maps. However, features in the
mask map are not sufficient to guide inpainting. Instead, we inpaint
the sub-material and compute the mask map on it as shown in

Original Input Masked Input Inpainted Input

Incomplete Mask Directly Inpainted Mask Segmented Mask

Fig. 10. Mask inpainting. We apply a hierarchical segmentation approach.
We first segment the chipped area, leaving the yellow paint and spaces
between the planks (Masked Input). If we directly segmented the masked
input, the result (Incomplete Mask) is difficult to fit procedurally. We need to
separate the influence of the parent mask (chipped area) from the sub parts
to separate (planks from space in between). To do so we use in-painting. Di-
rectly inpainting the incomplete mask fails as binary masks cannot provide
sufficient hints to guide the inpainting (Directly Inpainted Mask). Instead,
we inpaint the input image using PatchMatch (Inpainted Input) on which
we compute the segmentation, producing a better mask (Segmented Mask)

Fig. 10. Because PatchMatch inpainting is a sample-based method,
this second approach works best for stochastic distributions.

5.2.3 Random Sampling. When mask maps are generated using our
instance-based decomposition solution, we can model their distri-
butions by random sampling. Suppose we have 𝑛 mask maps, each
representing one type of segmented instance. We count the number
of instances in each mask map, and estimate their probability of
occurrence. During mask synthesis, we randomly – following the
estimated distribution – assign a label between 1 and 𝑛 to instances
in the procedural version of the mask map. The corresponding sub-
materials are then synthesized in the labeled regions.

5.3 Recomposition
Finally, using our generated procedural noise maps and masks tree,
we compose them into an output SVBRDF to reproduce the appear-
ance of the original SVBRDF inputs. To relate this approach to a
classical Substance Designer [2021] pipeline, our procedural noise
maps and binary masks function as generators nodes, which do not
rely on existing artist designed graphs.
To better match the original SVBRDF inputs, we add optimiz-

able operators to control the appearance of procedural noise and
binary maps. Given a noise map 𝐼 , we modify its appearance by
𝐺 (𝐼 ∗𝛼 +𝛿, 𝜎), where𝐺 is a Gaussian filter, 𝛼 controls the intensity, 𝛿
biases the noise, and 𝜎 is the standard deviation of the Gaussian filter.
For a binary mask map𝑀 which represents the distribution of sub-
materials, we model the smooth transition between the boundaries
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Fig. 11. Validation of our optimization-based recomposition. In this case, the
"input" material maps are generated using [Deschaintre et al. 2020] from a
natural image data where lighting is not completely removed from material
maps. Additionally, local variations of the different material maps cannot
be well represented with simple Gaussian noise especially in the normals.
Directly fitting these local textures using our multi-layer noise model leads
to large fitting errors and visual artifacts (3rd row). Using our differentiable
optimization approach, our method automatically refines the procedural
parameters of our output during the recomposition step (2nd row). Thanks
to this optimization, we improve the stability of our method for arbitrary
inputs. For better visualization we directly use the KNN segmented mask
rather than a procedural counterpart.

of sub-materials by𝐺 (𝑀,𝜎). The parameters 𝛼 , 𝛿 and 𝜎 are optimiz-
able for each Gaussian filter per noise or maskmap. In each leaf node
of our tree, the noise maps are multiplied by their corresponding
mask maps and linearly combined to reconstruct the SVBRDF maps
for a procedural sub-material. Procedural Sub-materials from differ-
ent layers are recursively computed and aggregated in a bottom-up
fashion to build the final output SVBRDF maps.
These optimizable operators, together with our reconstructed

noise maps and binary maps, build a small optimizable material
graph.We optimize thismaterial graph, using a differentiable rendering-
based optimization routine. The reconstructed SVBRDF maps and
the input SVBRDF maps are rendered using a Cook-Torrance, GGX
shading model under randomly sampled lighting configurations.
Considering that the structure of the procedural SVBRDF maps
might not align perfectly with the original inputs, we define the
loss as a combination of Style loss and SSIM loss. Style loss is de-
fined as the 𝐿1 difference between Gram matrices computed over
VGG [2015] features of the renderings, similar to the style transfer
literature [Gatys et al. 2016]. SSIM loss is computed by the 𝐿1 differ-
ence between the structural similarity (SSIM) indices [Zhou Wang
et al. 2004] of the renderings. The full loss is written as

𝐿 =
∑
∥𝐺𝑀 (𝐼𝑖 ) −𝐺𝑀 (𝐼∗𝑖 )∥1 + 𝛽 ∥𝑆𝑆𝐼𝑀 (𝐼𝑖 ) − 𝑆𝑆𝐼𝑀 (𝐼

∗
𝑖 )∥1 (3)

where 𝐺𝑀 is the Gram matrix and SSIM is an operator to compute
structure similarity index; 𝐼𝑖 and 𝐼∗

𝑖
are input/procedural albedo

map, normal map (computed from height map), roughness map and

their renderings; 𝛽 balances the weight between the style term and
the SSIM term. In Fig. 11 we show an example with and without this
optimization process. Often in real data local texture appearance
cannot be well represented by Gaussian noise models, resulting in
fitting errors and artifacts when generating procedural models (3rd
row in Fig. 11). This is particularly problematic for normal/height
map modeling. Our optimization helps refine the parameters of our
procedural graph, significantly improving the results, even when
the exemplar violates our assumption of locally uniform appearance
such as in Fig. 11.

5.4 Final procedural representation
Our final procedural representation of material maps is the equiv-
alent of small material graphs with (i) procedural noise maps (ii)
procedural mask maps (iii) optimizable operators, similar to Fig. 2.
In [Shi et al. 2020]’s terminology, each procedural noise and mask
model is a generator while optimizable operators serve as filters. As
a fully procedural model, editable parameters of our small material
graph are (i) parameters of our generators e.g. noise models and
mask models; (ii) parameters in the filter nodes. Editing can be done
on individual maps or jointly on all of them. The procedural model
can then generate the material at arbitrary resolution and scale.

6 RESULTS
We demonstrate our pipeline with a variety of materials as inputs.
Each material is defined by a set of SVBRDF maps including albedo
map, normal map and roughness map – these are the maps our
input materials use, but our method can adapt to any additional or
different gray-scale or color maps.

Our pipeline is implemented in Python and partly relies on Mat-
lab. Differentiable optimization of our material graphs (Sec. 5.3) is
implemented in PyTorch. We adopt an L-BFGS-B optimizer to opti-
mize our material graph with a learning rate of 0.005. It takes around
200 steps – 2 minutes on a Nvidia RTX 2070 Super GPU with a CPU
of Intel Core i7-9700 – to converge. A complete inverse material
modeling process takes less than 5 minutes for user interaction and
about 20 minutes for computing, depending on the complexity of
the input material. The typical computation time is: 2 minutes for
spectrum-aware matting; 13 minutes for procedural mask query (1s)
and optimization (depending on initialization quality); 3 minutes for
multi-layer noise modeling and 2 minutes for optimization-based
recomposition. We provide this time for reference but highlight that
our current implementation is not optimized.

Fig. 12 shows our inverse procedural modeling results on different
materials. For each example, inputs are albedo map, normal map
and roughness map only. We decompose these material maps using
our hierarchical segmentation methods and visualize the computed
labeled mask maps. Given material maps and computed hierarchical
mask maps, we generate procedural materials and output albedo,
normal and roughness maps (Sec. 5). The results show that our
pipeline can reproduce well a variety of stochastic and regular ma-
terials. We see that our method recovers both large scale patterns
and fine-grained details thanks to our sub-material decomposition
approach. The general structure and texture appearance are not
perfectly registered with the original input because our model is a

ACM Trans. Graph., Vol. 41, No. 2, Article 18. Publication date: January 2022.



18:10 • Yiwei Hu, Chengan He, Valentin Deschaintre, Julie Dorsey, and Holly Rushmeier

Albedo Normal Roughness Label Map Render (TL) Render (SL)
In
pu

t
O
ur
s(
Pr
oc
.)

In
pu

t
O
ur
s(
Pr
oc
.)

In
pu

t
O
ur
s(
Pr
oc
.)

In
pu

t
O
ur
s(
Pr
oc
.)

Fig. 12. Results of our method for different materials. We show that our pipeline can proceduralize a variety of materials, and reproduce their global structures
as well as local texture appearance. All of our results are entirely procedural. TL: Top lighting; SL: Side lighting. Please see our supplemental material for more
results.
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Fig. 13. Picture(s) as input. We apply our method on decomposed SVBRDF maps captured with a single or multiple image(s) with flash lighting [Deschaintre
et al. 2019, 2020; Guo et al. 2020b], showing the diversity of material source we can handle. Our procedural results enable further creation and provide more
regularity and remove the baked in lighting and irregularities due to the few image(s) capture method. The bottom two examples were segmented using the
instance segmentation approach showing that it can also handle irregular patterns. CTL: Central Top light; TSL: Top Side light. Please see our supplemental
material for more results. ACM Trans. Graph., Vol. 41, No. 2, Article 18. Publication date: January 2022.
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Fig. 14. High-resolution material synthesis. We show the input material in the bottom right corner and render a high resolution (2048× 1024) version generated
with our method’s results with lighting from the top. By applying our pipeline, we convert these pixel-based material maps to procedural representation thus
enabling arbitrary scale and resolution expansion without repetition.

procedural approximation of it. We aim at reproducing its appear-
ance rather than a pixel-perfect match [Deschaintre et al. 2018],
allowing us to preserve the material global appearance while sam-
pling a new realization of it or editing it, as shown in Fig. 16.

6.1 Natural Images as Input
Although our pipeline was designed to take material maps as input,
it can also work on natural and flash images, benefiting from ex-
isting material acquisition methods [Deschaintre et al. 2018, 2019,
2020; Gao et al. 2019; Guo et al. 2020b]. Providing a set of captured
images, we first apply a material acquisition method to generate ma-
terial maps, and use the generated SVBRDF maps with our method.
Fig. 13 shows examples of picture(s) as input. We convert the in-
put natural image(s) to SVBRDF maps using state-of-the-art mate-
rial acquisition methods [Deschaintre et al. 2019, 2020; Guo et al.
2020b].As opposed to "artist-designed" SVBRDF maps or manually
post-processed SVBRDF maps, automatically generated SVBRDF
maps are not perfectly clean. Different maps can be noisy and exhibit
shading and color variations due to incomplete lighting removal.
Normal maps in particular can represent strong height variations
even within a single sub-material. This makes it challenging to re-
cover an exact match to the input image. Furthermore, irregularities
often occur in acquired SVBRDF which should be regular. We show
in Fig. 13 that our pipeline is capable of matching acquired SVBRDF
overall appearance, and also of enforcing better regularity.

6.2 Application
6.2.1 Procedural Material Editing. Once proceduralized using our
method, materials can be further edited. Fig. 16 shows examples
of operations that we can apply on our results. We can freely edit
the way mask maps and noise models are combined, the large scale
structures (e.g patterns and distributions) and fine-scale details (e.g.
fine normals and roughness). Once generated, our procedural model
allows users to get interactive feedback on each of their edits. As op-
posed to [Hu et al. 2019; Shi et al. 2020], we do not rely on pre-defined
material graph, allowing artists to use our method to generate a
small tune-able and extendable material graph to start a new design.

Input

Ours 2× upscale
Fig. 15. Material super-resolution. We show our model can generate higher-
resolution textures but without changing its scale. This is achieved by only
procedurally upscaling mask maps which controls the global spatial distri-
butions of sub-materials.

Furthermore, Hu et al. [2019] relied on a style transfer like post-
process step to better match the input texture appearance, limiting
the editability of their final results.

6.2.2 High-resolution Material Generation. As a fully procedural
model, materials converted by our pipeline can be expanded to
arbitrary size. Global structures can be reproduced and extended
using the procedural mask map with PPTBF and random sampling,
while the appearance of sub-materials can be losslessly synthesized
to higher resolution using procedural noise models. Fig. 14 shows
examples of high-resolution material synthesis. The resolution of
the result material and rendered images is 2048 × 1024. We also
show an example of material super-resolution in Fig. 15 where the
resolution of the input SVBRDF is 512 × 512 and we double its size
in each dimension by procedurally upsampling its mask maps. Such
operation will not affect its global scale, providing a super-resolved
material rather than synthesize a larger scale one as demonstrated
in Fig. 14. More high-resolution materials generated by our method
are shown in the supplemental material.
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Original Ours Proc. Edit Sequence
Fig. 16. Procedural material editing. Our procedural material model pro-
vides editability to users. In the top example, we edit the optimizable filter
parameters to change the (1) roughness (2) normal and (3) color of the mate-
rial sequentially; for the second example, we edit parameters in the (1) mask
generators (first two edits) to change spatial arrangement and distribution
of sub-materials; and (2) noise generators (last edit) to change the fine-scale
normals on each tile; we edit all parameters for the third example where (1)
high-frequency shininess is removed; (2) global structures are changed (last
two edits); and (3) normals are enhanced, leading to a completely different
leathered brick material. Please zoom-in to see fine-scale controls.

6.3 Comparison with Prior Work
We compare our results to previous work in inverse procedural
modeling and in texture synthesis. Since we take the output of a
material acquisition method as input to our pipeline, we do not
compare to material acquisition methods.

6.3.1 Inverse Procedural Material Modeling. We compare our ap-
proach with state-of-the-art inverse procedural material modeling
frameworks [Hu et al. 2019; Shi et al. 2020] in Figs. 18 & 19. Both
are built on a collection of pre-defined material graphs and rely on
model selection with parameter estimation. While Hu et al. directly
applies neural network to predict parameters, Shi et al. (MATch)
optimize parameters by end-to-end differential rendering. We use
the model selection scheme of Hu et al. to chose input substance
models for both methods. Despite not using pre-existing material
graphs, we show that our pipeline well reproduces material maps
with regular and stochastic patterns e.g. brick and stucco, similar
to the examples shown in [Hu et al. 2019]. Hu et al. additionally
propose a post-processing step (see Hu et al. (b) in Fig. 18) to enrich
the details, but this step is done on the rendered images (instead of
material maps) and loses its procedural aspect.

Direct comparison to (MATch) [2020] is difficult because the op-
timization framework of MATch strongly depends on the quality
of initialization. Indeed, the MATch framework cannot optimize
discrete parameters. This limitation requires the scale of the struc-
tured target to be the same as the selected procedural material. The
user is then required to manually fine-tune discrete parameters in
Substance Designer. Additionally, only a subset of the Substance
Engine was made differentiable in MATch, limiting the pool of com-
patible procedural graphs. In Fig. 19 and the supplemental material

we attempt to provide good initialization and discrete parameters
for MATch.

6.3.2 Texture Synthesis. We also compare our approach with tex-
ture synthesis methods as they share the ability of resolution ex-
tension our method allows. We experiment with several state-of-
the-art example-based texture synthesis methods and generalize
them to accept material maps as input. We stack all material maps
together to build a high-dimensional texture map where each texel
encodes albedo values, normal directions and roughness values. Loss
functions are computed on each material map and averaged. For
self-tuning texture optimization [Kaspar et al. 2015], its generaliza-
tion to multi-channel material maps is not trivial and we therefore
run their algorithm separately on each material map. Fig. 17 shows
these comparisons in which the input resolution is 300×300 and the
output resolution is 512 × 512. We see that our method is capable
of extending both structured and stochastic materials and does not
suffer from artifacts seen in traditional texture synthesis approaches
such as structure error. Finally, and most significantly, compared
with these other texture synthesis approaches, our method enables
editing and fast synthesis of larger resolution without necessarily
augmenting the scale.

7 LIMITATIONS

7.1 Texture Taxonomy for Proceduralization
To characterize the limitations of our work, we describe the space
of possible materials we attempt to model. We consider materials as
collections of elements. The space of different element collections
has four dimensions defining the complexity of the proceduraliza-
tion of a material, illustrated in Fig. 20. The first axis is the number
of different material element types in the texture. Both the types
of elements and their spatial distribution relative to one another
need to be modeled. The second axis is the nature of the spatial
distribution, whether the elements on the texture are sparsely or
densely positioned, with overlap for example. Dense spatial distribu-
tion are harder to segment using masks. The third axis is complexity
of the contour of the spatial mask. The more complex, the more
difficult it is for PPTBF or any procedural approach to represent
them faithfully. The fourth axis is the texture within each element,
whether it can easily be represented as noise or is more structured
and semantically meaningful.

Our general pipeline that segments SVBRDF and then estimates
parameters for each element type, applies to the complete space we
have described. However, our current implementation is limited to
the less complex end of each of the last three axes. Our segmen-
tation method is limited in that it cannot appropriately segment
dense overlapping material. As stated, PPTBF performs well with
irregular simple contours but not with complex contours. Finally,
for the fourth axis we have not developed a method to proceduralize
semantically meaningful elements such as the bunny.

7.2 Specific Limitation Examples
Our results show that our pipeline is able to proceduralize different
types of materials with multiple SVBRDF maps e.g. albedo, normal
and roughness. In Fig. 21 we show failure cases that result from the
general limitations we just described. The combination of complex
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Input Ours Adversarial Expansion InGAN Self-tuning Quilting

Fig. 17. Comparison of our method with example-based texture synthesis methods on SVBRDF maps. We generalize these methods to process multi-channel
SVBRDF maps. We show our method; InGAN [Shocher et al. 2019]; Non-stationary Texture Synthesis by Adversarial Expansion [Zhou et al. 2018]; Self-tuning
Texture Optimization [Kaspar et al. 2015]; ImageQuilting [Efros and Freeman 2001]. Images shown here are rendered by GGX shading model.

contours and a semantically meaningful structure results in the
failure shown in the top row of Fig. 21. The complex contours
form a "flower" shape that is not preserved by the PPTBF mask.
The presence of a sub-material that is itself composed of a densely
packed set of elements results in the failure shown in the bottom
row of Fig. 21. Neither a noise pattern nor our segmentation method
can capture the arrangement of the small pebbles forming the fill
material between the square elements. Finer segmentation could
produce better results, but the overlapping partial shapes would
still be difficult to match using PPTBF. In some cases, such as the
second example of Fig. 17, the retrieved procedural mask will have
small differences in the contours compared to the original. Adding
a loss more sensitive to contours could improve such cases.

Finally, as our procedural material model is built upon multi-scale
Gaussian noise models and Gaussian filters, it poorly reproduces
highly-structured variations e.g. extremely-strong and directional
normal variations seen as Fig. 22. In these cases, the segmentation of
the height map is also ambiguous, leading to less faithful procedural
reconstruction.

8 FUTURE WORK
In this work, we propose the first complete pipeline for inverse pro-
cedural modelling of general materials and highlight the challenges
of each steps. We describe here interesting future work to enable
better proceduralization.
Modelling. New generative approaches such as deep texture or

material generation [Henzler et al. 2021, 2020] could help better

reproduce complex material appearances that cannot be simply
represented by noise models, while sacrificing some control.

Segmentation. Our pipeline relies on user input, allowing user
control and specification of the artistically important elements in
the material. Nevertheless, a fully automatic segmentation would
provide a faster approach and allow for quickly proceduralization of
a large amount of materials. Current methods [Bell et al. 2015; Chen
et al. 2018; Cho et al. 2016; Xu et al. 2017] are not geared toward
material segmentation and fail on the materials we consider.

Recomposition. Complex details and patterns might be lost dur-
ing procedural modeling as our method relies on noise and mask
fitting. Introducing advanced differentiable filters and generator –
such as ones in Substance Designer and MATch [Shi et al. 2020]
– to modify the appearance of procedural noise maps and binary
maps, would allow to represent a wider range of appearances, fur-
ther narrowing the gap between input and generated procedural
materials.

9 CONCLUSION
We present the first pipeline for semi-automatic material procedural-
ization. Given a set of input material maps, our pipeline decomposes
them into a tree of sub-materials and corresponding binary mask
maps. We model the local appearance of sub-materials by proce-
dural noise models and proceduralize binary mask map to reproduce
global distribution of sub-materials.

Compared with previous work [Hu et al. 2019; Shi et al. 2020], our
pipeline does not rely on any predefined material graphs. With our
approach, combined with the state-of-the-art material acquisition
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Input Hu et al. (a) Hu et al. (b) Ours
Fig. 18. Comparison of our method to [Hu et al. 2019]. The second column
shows predicted procedural results by [Hu et al. 2019] while the third column
is their style augmented results (non-procedural and no edibility). In contrast
to their method, our pipeline generates fully procedural materials without a
pre-existing material graph as an auxiliary input. The images are rendered
using Blender with diffuse reflectance to match [Hu et al. 2019].

Input Default MATch Ours
Fig. 19. Comparison of our method to MATch [2020]. We use Hu et
al. [2019]’s framework to select a close Substance model (Default), and
use MATch to optimize its appearance. As the MATch framework does not
handle discrete parameters and requires good initialization, it can generate
poor output if the initialization and the discrete parameters are not hand-
tuned. This can give poor results for bricks as shown in the supplemental
material. Materials are rendered using the GGX shading model.

methods, we enable convenient creation of high quality spatially
varying procedural materials. We take a first step toward general
material proceduralization and hope our work and highlighted chal-
lenges will inspire future research.

Spatial 
Distribution of 

Elements

Element 
Contours

Element 
Content

Sparse, easy to segment Dense, hard to segment

Simple, smooth contours Complex contours

Noise content

Number of 
Element 
Materials

Two Materials Multiple Materials

Structured content

Fig. 20. Illustration of the four dimensions of variation of element collections
in the space of material textures that we model.

Input Render("GT") Segmented Our Procedural Our Render

Fig. 21. Failure cases on semantically-shaped pattern and densely-
overlapped material. The input images are a captured image (first row)
and an arbitrary texture (second row). The "Ground Truth" render is gen-
erated using [Deschaintre et al. 2020] results. The first row shows a case
where our PPTBF-based procedural mask map fails to reproduce the struc-
ture of the segmented mask map, missing the semantic "flower" shape. In
the second row, one of the sub-material contains dense, small, overlapping
pebbles which cannot be well reproduced by our multi-layer noise model or
easily segmented. As a result, individual pebbles cannot be distinguished in
our rendered result. Please zoom in to see details.
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Fig. 22. Failure cases on material exemplars with highly-structured vari-
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variations which cannot be either 1) identified by segmentation or 2) re-
covered by noise models and Gaussian kernels on the transition regions of
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our procedural map. For better visualization, the first material is rendered
with a central light while the second material is rendered with a top side
light.
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