
A Novel Framework For Inverse Procedural Texture Modeling

YIWEI HU, Yale University
JULIE DORSEY, Yale University
HOLLY RUSHMEIER, Yale University

Fig. 1. Our novel framework for inverse procedural texture modeling by example. Given an input texture exemplar, our inverse modeling system can choose
appropriate procedural texture models e.g. node graphs and apply pre-trained CNNs to estimate corresponding parameters (left). With chosen models and
predicted parameters, procedural textures can be generated and expanded to arbitrary resolution such as 4K or 8K. High-quality and fast scene texturing can
be achieved (average 160ms for 4K textures and 1.5s for 8K textures) and users can edit the procedural textures quickly and conveniently by tuning parameters
(right).

Procedural textures are powerful tools that have been used in graphics for
decades. In contrast to the alternative exemplar-based texture synthesis tech-
niques, procedural textures provide user control and fast texture generation
with low-storage cost and unlimited texture resolution. However, creating
procedural models for complex textures requires a time-consuming process
of selecting a combination of procedures and parameters. We present an
example-based framework to automatically select procedural models and
estimate parameters. In our framework, we consider textures categorized
by commonly used high level classes. For each high level class we build
a data-driven inverse modeling system based on an extensive collection
of real-world textures and procedural texture models in the form of node
graphs. We use unsupervised learning on collected real-world images in a
texture class to learn sub-classes. We then classify the output of each of the
collected procedural models into these sub-classes. For each of the collected
models we train a convolutional neural network (CNN) to learn the param-
eters to produce a specific output texture. To use our framework, a user
provides an exemplar texture image within a high level class. The system
first classifies the texture into a sub-class, and selects the procedural models

Authors’ addresses: Yiwei Hu, Yale University, yiwei.hu@yale.edu; Julie Dorsey, Yale
University, julie.dorsey@yale.edu; Holly Rushmeier, Yale University, holly.rushmeier@
yale.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0730-0301/2019/11-ART186 $15.00
https://doi.org/10.1145/3355089.3356516

that produce output in that sub-class. The pre-trained CNNs of the selected
models are used to estimate the parameters of the texture example. With the
predicted parameters, the system can generate appropriate procedural tex-
tures for the user. The user can easily edit the textures by adjusting the node
graph parameters. In a last optional step, style transfer augmentation can be
applied to the fitted procedural textures to recover details lost in the proce-
dural modeling process. We demonstrate our framework for four high level
classes and show that our inverse modeling system can produce high-quality
procedural textures for both structural and non-structural textures.

CCS Concepts: • Computing methodologies → Appearance and tex-
ture representations; Texturing.

Additional Key Words and Phrases: procedural textures, inverse procedural
modeling, convolutional neural networks

ACM Reference Format:
Yiwei Hu, Julie Dorsey, and Holly Rushmeier. 2019. A Novel Framework For
Inverse Procedural Texture Modeling. ACM Trans. Graph. 38, 6, Article 186
(November 2019), 14 pages. https://doi.org/10.1145/3355089.3356516

1 INTRODUCTION
Procedural textures have been used extensively in computer graph-
ics because of their compactness and flexibility. With procedural
models, texture synthesis becomes straightforward and texture im-
ages of arbitrary size can be generated rapidly. However, existing
authoring systems for procedural textures rely on skilled users to
handcraft procedural models and carefully choose a set of proper
parameters to achieve a desired texture appearance. Frequently de-
signers will use a node graph such as Fig. (2) to represent a complex

ACM Trans. Graph., Vol. 38, No. 6, Article 186. Publication date: November 2019.

https://doi.org/10.1145/3355089.3356516
https://doi.org/10.1145/3355089.3356516

186:2 • Yiwei Hu, Julie Dorsey, and Holly Rushmeier

procedural texture model and generate SVBRDF (spatially varying
bidirectional reflectance distribution function) maps e.g. albedo, nor-
mal, roughness and metallic maps. The node graph can consist of
dozens of nodes where each node represents a type of operation
and may require many parameters. Building such a node graph
from scratch and tuning parameters to achieve satisfactory textures
is time-consuming and can be very hard for a non-professional
user. On the other hand, exemplar-based texture modeling has been
widely studied for texture synthesis [Efros and Freeman 2001] [Kwa-
tra et al. 2003]. These methods take a texture exemplar to create
new larger scale texture image with the same appearance. This in-
verse modeling process has many advantages over a forward texture
design process. Even a novice user can specify their desired texture
appearance by example. However, the ability to edit and rapidly
generate large texture images is lost.

In this paper, we propose a new framework for inverse procedural
texture modeling by example (shown in Fig. (1)). Our goal is to find
appropriate procedural texture models, e.g. node graphs, and a set
of parameters to fit the user-specified texture exemplar. Since node
graphs can be quite complex, it can be difficult to directly infer the
varied structures inside a node graph given only a texture sample.
Instead, we design our system in a data-driven way. We note that
in the designer community, many elaborate procedural models are
shared and available online. These procedural texture models as
well as real-world textures are naturally classified into different high
level texture classes. For example, in the community sharing system
in [https://share.substance3d.com/], material classes such as leather,
rock, and wood are used. Based on this observation, we build a
database of real-world textures and corresponding procedural tex-
ture models according to different high level texture classes. We
study the relationship between real-world natural image textures
and procedural textures so that we can select matched procedural
models which share high visual similarity with the given texture
exemplar. These selected node graphs can be powerful enough to
approximate the given real-world texture exemplar. To achieve this,
we perform unsupervised learning on collected real-world textures
to find out different sub-classes within a texture class. Sub-classes
can represent different styles of textures in a class. Afterwards, the
system samples the procedural texture models of the same class
in the database to generate procedural texture samples, and clas-
sify these procedural samples into sub-classes. For each procedural
texture model we train a CNN (Convolutional Neural Network) to
learn the procedural parameters to obtain a particular texture.
In our framework, a user presents an example texture image for

a selected high level class. Our system then identifies the sub-class
for the texture, selects appropriate procedural texture models, and
uses the corresponding trained networks to find the model param-
eters. However, even elaborated procedural models may still lack
of the ability to fully capture the fine-grained spatial variations
in real-world textures. A visually non-negligible gap between pro-
cedural textures and captured images exists. To further enhance
the fidelity of our generated procedural textures, we propose an
optional style transfer augmentation step [Gatys et al. 2016] using
our procedural texture as the content image and using the given
sample image as the style image. This style transfer step can faith-
fully reconstruct original sample images via transforming predicted

Fig. 2. A procedural texture model can be represented as a node graph.
As an example, this node graph used in Allegorithmic Substance Designer
[Allegorithmic 2019b] can generate a brick texture with 7 SVBRDF maps
including albedo map, normal map, roughness map, metallic map, height
map, ambient occlusion map and opacity map.

procedural textures back to pixel domain though at the expense of
loss of editability. Our results show this style transfer is an effective
way to bridge the gap between procedurally generated images and
real-world images.

To illustrate our framework, we demonstrate a system built on a
database of procedural texture assets including four texture classes
for building materials – bricks, grass, shingles and stucco. Our re-
sults show our inverse modeling system can gain high-quality pro-
cedural textures for both structural and non-structural textures. Our
experimental results further demonstrate that these approximated
procedural textures can facilitate convenient 3D scene design.

Our main contributions are:

• We propose a novel framework for inverse procedural texture
modeling based on a database of real-world textures and
procedural texture assets to select style-matched procedural
models.

• We present an example-based inverse procedural texturemod-
eling method using Convolutional Neural Networks.

• We introduce a style transfer augmentation step to bridge the
gap between procedural textures and real-world images.

• By predicting procedural texture parameters automatically,
our approach offers a greater level of control and expressive-
ness in the generation of desired textures by enabling easy
editing of a procedural model.

2 RELATED WORK

2.1 Texture Authoring Systems
Texture authoring systems frequently use databases [Allegorithmic
2019b; Blender 2019b] containing a wide range of different tex-
tures. Often users choose to search for their desired textures in the
database rather than create their own textures from scratch. Since
textures are naturally classified into different classes (fabric, wood,
metal, etc.), users will first look for textures within a specific texture
class and they will start a fine-grained visual search for different
styles of texture in that class. Our framework is inspired by this
general idea. We build our model selection scheme by studying the
sub-classes of a texture class based on style differences.

ACM Trans. Graph., Vol. 38, No. 6, Article 186. Publication date: November 2019.

A Novel Framework For Inverse Procedural Texture Modeling • 186:3

2.2 Inverse Procedural Texture Modeling
Inverse procedural texturemodeling can be considered as an example-
based inverse procedural modeling problem. While early works
[Dischler et al. 2002; Lefebvre and Poulin 2000] apply image anal-
ysis to extract the structural and local information from texture
samples, their methods use manually crafted templates which are
difficult to generalize into complex procedural texture models. For
instance, Lefebvre and Poulin [2000] proposed a handcraftedmethod
to estimate the parameters of procedural brick and wood textures.
However, these handcrafted rules are very sensitive to noise and
always need user intervention, while our CNN-based approach can
invert more complex models without user intervention and manu-
ally designed rules.
Additional works have considered procedural noise models. La-

gae et al. [2010] introduced a method to evaluate the weights of
procedural multiresolution noise which can be used for texture syn-
thesis for isotropic stochastic procedural texture samples. Galerne
et al. [2012] proposed an example-based method to estimate the pa-
rameters of bandwidth-quantized Gabor noise using non-negative
basis pursuit denoising. Later, Local Randon-Phase Noise [Gilet
et al. 2014], Texton Noise [Galerne et al. 2017] and Histogram-
Preserving Blending Operator [Heitz and Neyret 2018] were de-
veloped to achieve high quality noise textures with faster speed. In
contrast to procedural noise by example, we consider the general
procedural texture appearance problem and emphasize large-scale
patterns. Other work e.g. [Nishida et al. 2016] has applied machine
learning to inverse procedural modeling of 3D shape but not of
texture.

2.3 Texture Synthesis
Texture synthesis has been an active research area in computer
graphics for many years. Most texture synthesis approaches are
based on pixel representation and do not synthesize procedural
textures. Wei et al. [2009] provided a comprehensive overview of
classic example-based texture synthesis methods. While pixel-based
synthesis methods [Efros and Leung 1999; Wei and Levoy 2000]
work by generating output texture pixel by pixel based on local
neighborhood searching, patch-based synthesis methods [Efros and
Freeman 2001; Kwatra et al. 2003] proceed by copying and pasting
patches of sample textures to output textures. Optimization-based
texture synthesis was proposed by [Kwatra et al. 2005] who posed
texture synthesis as an energy optimization problem. It is worth
noticing that Wei et al. [2008] proposed an inverse texture synthesis
method. While their approach aims to produce a small texture com-
paction to summarize the original texture, our framework focuses
on transforming pixel-based texture representation to graph-based
representation.

In contrast to classic texture synthesis works, Gatys et al. [2015]
proposed a deep learning based approach to synthesize new textures
given the texture sample. They used a CNN pre-trained on object
recognition task to extract features from the texture sample and
solve the texture synthesis problem by running an optimization
algorithm on a target image initialized as a noise image. The gradient
descent process let features of the target image gradually match the
features of the texture sample. Ulyanov et al. [2016] introduced an

accelerated version of this texture synthesis process by replacing the
optimization process with a single forward prediction pass. Zhou
et al. [2018] proposed a non-stationary texture synthesis approach
using a Generative Adversarial Network (GAN). They adapted a self-
supervised training strategy and they demonstrated their approach
can iteratively expand the source textures into extremely large size.
However, most of these texture synthesis approaches are still

limited in the pixel domain which means a synthesized higher res-
olution texture will consume more storage space and is still not
suitable for editing. Our framework can provide users a more com-
pact procedural representation which is useful for design iteration.

2.4 SVBRDF Acquisition With Deep Learning
SVBRDF acquisition with deep learning aims to apply learning-
based methods to decompose captured natural images into SVBRDF
maps such as albedo maps, normal maps etc. Aittala et al. [2016] in-
troduced an optimization-based SVBRDF reconstruction method to
infer SVBRDF maps from a single head-lit near-plane texture sample
via CNN-based texture statistics comparison. Li et al. [2017a] de-
signed an auto-encoder style neural network with self-augmentated
training process to directly decompose captured images into SVBRDF
maps in a single forward pass. Subsequent works proceeded to refine
the quality of the reconstructed results by introducing an in-network
rendering layer [Deschaintre et al. 2018; Li et al. 2018a]. Recently,
Li et al. [2018b] proposed a physically-motivated network to simul-
taneously reconstruct the unknown shape and SVBRDF maps from
a single image of the object sample.
Our approach, to some extent, is similar to SVBRDF map de-

composition. The aforementioned methods all essentially pose this
problem as learning a mapping from one image space to another
image space. However, our system attempts to directly predict the
parameters of the node graphs and then use the node graphs with
the predicted parameters to generate corresponding SVBRDF maps.

3 METHOD
In this section, we describe the detailed implementation of our
framework for inverse procedural texture modeling. We build a
data-driven inverse modeling system based on a database of real-
world natural textures and procedural texture assets. Thanks to
various exchange platform in the designer community, we first
collect enough real-world textures and procedural texture models
to drive our system (Sec. 3.1). We present a model selection method
to automatically select best matched procedural assets based on the
style similarity (Sec. 3.2). For each procedural texture model, we
train a CNN to estimate appropriate parameters for texture sample
inputs (Sec. 3.3). During the evaluation phase, given a user-specified
texture exemplar, our system can provide suitable procedural texture
models with predicted parameters, and an optional style transfer
augmentation can be applied (Sec. 3.4). Fig. (3) shows an overview of
our system’s workflow. We also discuss the scalability of our system
in Sec. 3.5.

3.1 Data Collection
Since textures can be naturally classified into different classes, our
texture database is built by collecting real-world natural textures

ACM Trans. Graph., Vol. 38, No. 6, Article 186. Publication date: November 2019.

186:4 • Yiwei Hu, Julie Dorsey, and Holly Rushmeier

Fig. 3. Overview of our inverse modeling system. Our system starts by collecting real-world textures and corresponding procedural models. Real-world
textures are used to learn style-based sub-classes while procedural models are classified into these sub-classes. A CNN pool is trained for all the procedural
models to estimate parameters given a texture exemplar. The green lines show the training process of our system, while the blue lines are the evaluation
process. During the evaluation phase, our system applies K-means model to select appropriate procedural models which share style similarity with given
texture sample. We predict the parameters of the selected procedural models and generate procedural texture results. The final step can be an additional style
transfer augmentation step.

al
b e
do

no
rm

al
re
nd

er
ed

brick grass shingle stucco
Fig. 4. Synthesized procedural texture samples including albedo maps, nor-
mal maps and rendered textures for the four texture classes in our database.

and procedural assets in given texture classes. In this paper, we build
our experimental system based on the four kinds of textures–brick,
grass, shingle and stucco–which are commonly used in architectural
visualizations. These four classes contain both regular and random-
ized texture patterns with different scales. Such variety is suitable to
demonstrate the potential to generalize our framework to generate
procedural textures for other classes. We collect real-world textures
by Google Images via keywords such as "brick texture". We gather
procedural assets of these four texture classes from Allegorithmic
Substance Share [Allegorithmic 2019b], a free exchange platform
with abundant high-quality procedural texture models created by
designers. The procedural texture models shared in this platform
are in the form of node graphs e.g. Fig. (2) which can be edited by
Allegorithmic Substance Designer [Allegorithmic 2019a]. To make
our system more compact, we filter our collected procedural assets
to choose a small set that produce diversified appearance. Five pro-
cedural assets are selected for brick textures, three for grass, five

Brick Textures Grass Textures

Shingle Textures Stucco Textures

Fig. 5. Visualization of the distribution of style-based sub-classes for each
of the high level texture class in our database. Visualization is achieved by
using PCA to find a 2D embedding.

for shingles and four for stucco. Some procedural texture examples
can be seem in Fig. (4).

3.2 Procedural Model Selection
Model selection is a necessary step in our framework. It would
be very inefficient to use all the procedural texture models of a
texture class to fit the given texture sample, especially when the
system can be potentially extended to consist of dozens of procedural
models per texture class. Each high level texture class includes
a diverse range of styles, and not all styles can be produced by
each procedural model. We want to select models that will reliably
produce visually satisfactory results for the particular user input.
To achieve this, we propose a procedural model selection method

ACM Trans. Graph., Vol. 38, No. 6, Article 186. Publication date: November 2019.

A Novel Framework For Inverse Procedural Texture Modeling • 186:5
su
b-
cl
as
s 1

su
b-
cl
as
s 2

su
b-
cl
as
s 3

su
b-
cl
as
s 4

su
b-
cl
as
s5

su
b-
cl
as
s6

Fig. 6. Samples of 6 learned sub-classes based on style difference in the
brick texture class. Clear style differences can be noticed among the exem-
plar textures in different sub-classes. Image credit: bottom row rightmost,
www.vectorstock.com.

Baseline Origin Rescaled (1.22x)
Fig. 7. An example for our auto-rescaling process. Grayscale images are
used for better visualization. For each image in the dataset, we compute the
normalized autocorrelation function (NACF) shown as the bottom row. We
pick up an image sample (leftmost) as the baseline and rescale other images
(middle) to the similar scale (rightmost) as the baseline. For this shingle
texture case, we can measure the scale of the textures by computing the
frequency of the horizontal bright lines in NACF maps. We then compute
the relative scale factor for each shingle textures and rescale them by the
scale ratio. Image credit: top row leftmost,www.textures.com; top rowmiddle,
3docean.net.

based on unsupervised clustering. Our model selection method will
only choose the procedural models with the same style as the given
texture sample. Specifically, our inverse modeling system performs
unsupervised clustering on collected real-world textures to find the
natural sub-classes in each high level class. Each sub-class is a type
of style in the high level texture class.

Recently, many works analyze the style representation of an im-
age using deep learning based methods. Gatys et al. [2016] measured
the style similarity between two images by comparing the differ-
ences between the Gram matrices of two images. Li et al. [2017b]

argued that the style discrepancy between two images can be mea-
sured as the difference between their feature distributions. Inspired
by their ideas, we apply a pre-trained VGG19 network [Simonyan
and Zisserman 2014] to extract deep feature maps from our collected
real-world images. Instead of using Gram matrices, we define the
style representation by computing the histogram on each layer of
the feature maps and concatenate the histogram results together to
construct our style representation. For instance, with deep feature
maps with N layers, we compute the histogram with M bins for
each layer, and can achieve a NxM size feature vector to represent
style. Compared with the Gram matrix representation, our style
definition has lower dimension which is more reliable for an un-
supervised clustering algorithm. In practice, we extract the deep
feature maps from Relu5_1 layer from VGG19 network and compute
the histogram with the bin size of 30. The final style feature is a
15360 dimension vector.

With these style features, we use Principle Component Analysis
(PCA) to reduce the redundant information to stabilize unsupervised
clustering and then run a K-means algorithm to get sub-classes based
on their style difference. We determine the number of clusters K
via the gap statistic [Tibshirani et al. 2001]. We enumerate K in
the range of 3 to 10 since too many clusters are unwanted, and
finally we choose K = 6 for brick textures, K = 5 for grass textures,
K = 3 for shingle textures and K = 4 for stucco textures in our
experiment. The details of K selection are given in the supplemental
document. The final clustering results can be visualized in Fig. (5).
Style differences can also be clearly noticed visually such as among
brick texture samples in Fig. (6). Having acquired the sub-classes
of one texture class, our system can then sample the procedural
models belonging to that class and apply the trained K-means model
to classify them into different sub-classes. In our experiments, our
system samples 50 textures for each of our procedural models and
applies the K-means model to classify them into different clusters.
It is reasonable that some procedural models produce results in
multiple sub-classes. An average 3∼5 of total 5 procedural brick
models are clustered into a learned sub-class, while 1∼4 of 5 for
procedural shingle models, 2∼3 of 3 for procedural grass models
and 2∼4 of 4 for procedural stucco. An interesting observation is
that for grass textures, all of our 3 procedural grass models are
classified into 3 of the 5 sub-classes, while two other sub-classes do
not contain any procedural model. This is an important indication
that additional procedural models are needed to cover the full range
of naturally occurring grass textures (see Sec. 3.5).

Since we attempt to re-purpose the VGG19 network (which was
pre-trained on the object recognition task) to compute style features
for our task, a potential problem is that the scale information is
embedded in the extracted features which will bias our unsuper-
vised clustering results towards scale differences rather than style
differences. We solve this problem by automatically normalizing our
collected real-world images into the same scale. We compute the
normalized autocorrelation function (NACF) similar to [Pintus et al.
2015] to identify the scale of the natural textures. We pick a sam-
ple from our collected real-world textures and compute its NACF
as the baseline and rescale other real-world textures to the same
scale. Auto-rescaling processes are applied on all of our textures
except stucco textures. Fig. (7) shows one auto-rescaling example

ACM Trans. Graph., Vol. 38, No. 6, Article 186. Publication date: November 2019.

186:6 • Yiwei Hu, Julie Dorsey, and Holly Rushmeier

on shingle textures. See the supplemental document for other kinds
of textures.

3.3 Learning Inverse Mapping With CNN
For each procedural model in our database, we need to estimate
their parameters when given a texture example. Formally, a node
graph д can be defined as a function д(θ) where θ is the parameter
vector, the output of this function will be SVBRDF maps. Hence,
this inverse problem can be posed as an optimization problem given
an example texture I

θ∗ = argmin
θ

d(I ,R(д(θ))) (1)

where d(·, ·) is a similarity metric and R is a rendering operator.
Directly solving this problem by traditional gradient-based opti-
mization algorithms, may not yield a satisfactory result (see Fig.
(15)) because the node graph д can be non-continuous. The analyt-
ical gradient is inaccessible, and for many situations, the detailed
implementation of node graph д is unknown (e.g. an unknown im-
plementation in a commercial software). Early works [Dischler et al.
2002; Lefebvre and Poulin 2000] circumvent this ill-posed optimiza-
tion problem by image analysis on given texture samples using
manually designed criterion. Their approaches are only suitable
for simple procedural models. In this section, we introduce a de-
tailed implementation of our CNN-based method to learn an inverse
mapping from given texture sample to the appropriate parameter
vector of a pre-defined node graph д. The major elements are data
generation, network structures and training process.

3.3.1 Data Generation. The dataset can be generated by the proce-
dural texture model д itself. We can synthesize the whole training
and validation dataset by randomly sampling the parameter space
and use the node graph itself to generate corresponding albedo maps
and normal maps. While in most case, the structure information in
the albedo maps is enough to represent the texture’s main patterns,
designers may prefer to add more detailed structural information to
the normal maps (see Fig. (4)), such as grooves or scratches. Based
on this observation, the albedo map and normal map should be
rendered as a natural texture to combine the structural information
in both of the maps.

While many works on SVBRDF acquisition suggested using envi-
ronment illumination (Image-based lighting) [Li et al. 2017a, 2018a]
or global illumination [Li et al. 2018b] to synthesize images in their
data generation process, we propose rendering the albedo map and
normal map with direct illumination to capture the structural infor-
mation in the textures, making the rendering process much faster.
Besides, even if the node graph can generate a roughness map and
metallic map, in our model we do not make a specific assumption
about lighting conditions such as the use of a flash [Deschaintre
et al. 2018; Li et al. 2018a,b], so we have an under-defined problem
for inferring the roughness or metallic values. Hence, we omit the
roughness and metallic maps.
The rendering process is accomplished using Blender [Blender

2019a] where we render a plane textured with the albedo map and
normal map using direct sun light. We use a diffuse reflectance
model to render the plane with a perspective camera positioned so
that the view vector in the direction of center is perpendicular to the

C
on

v3
-3

2

Po
ol

in
g

C
on

v3
-6

4

BN

Po
ol

in
g

C
on

v3
-1

28

BN

Po
ol

in
g

C
on

v3
-2

56

BN

Po
ol

in
g

In
pu

t

FC
-4

09
6

FC
-2

56

FC
-N

128 64 32128 64 64 32 32 16 16 16 8

Feature Extractor Regressor

Fig. 8. Our network structure consists of four basic network blocks as feature
extractor followed by three fully connection layers for parameter regression.
The number below each layer represents spatial resolution. Each basic
network block is composed by a convolutional layer, a batch normalization
layer (except the first block) with subsequently a Leaky Relu activation unit
and a pooling layer which can be either average or max pooling. For each
convolutional layer Conv3-X, we set stride=1, kernel size=3, and number of
output features = X. For each fully connection layer FC-X, we set number of
output features = X. We insert a dropout layer after each of the first two
fully connection layer. We add a tanh layer after the last fully connection
layer to normalize the output between -1 and 1. The output of the final layer
is the predicted N parameters.

plane. Fig. (4) provides a few examples of our synthesized texture
data including albedo maps, normal maps and rendered textures.

3.3.2 Network Structure. As shown as Fig. (8), our CNN structure
follows the classic network structure AlexNet [Krizhevsky et al.
2012] and is extended to fit our parameter regression task. The in-
put texture is a 3-channel RGB image with the spatial resolution
of 128x128. The feature extraction part of our network is built by
four basic network blocks followed by a parameter regression part
which is built by three fully connection layers. The last fully connec-
tion layer predicts normalized parameters of the procedural model.
Please refer to the comments in Fig. (8) for detailed settings.
Transfer learning [Torrey and Shavlik 2010] can be a possible

choice to train our model based on pre-trained neural networks
such as VGG19 [Simonyan and Zisserman 2014] to avoid training
from scratch. Our experiment results show though that re-targeting
pre-trained deep neural networks to our parameter prediction task
does not give better results.

3.3.3 Training Process. Since our data are all synthesized by proce-
dural texture model itself, the training can be modeled as an online
training process. When the training result is unsatisfactory, we can
sample more data points to further reduce the loss. The training
process proceeds until the loss is reduced to a small threshold. We
augment the training data by adding Gaussian noise to input tex-
tures. To stabilize and accelerate the training process, we pre-process
the parameter data and texture data by normalizing them between
-1 and 1, and the output of CNN is also normalized within -1 and
1 by a tanh layer. We use Adam Optimizer with a 0.0001 learning
rate. The training is regularized by weight decaying of 0.0005 (L2
regularization). We adapt weighted Mean Squared Error (MSE) loss
as our loss function. From our initial experimental results, we found
sampling 80000 data points is sufficient to reduce the error to a rea-
sonable threshold (0.15) for most of the procedural models. Hence,

ACM Trans. Graph., Vol. 38, No. 6, Article 186. Publication date: November 2019.

A Novel Framework For Inverse Procedural Texture Modeling • 186:7

for remained procedural models, we directly sample enough data
points in order to accelerate the training process.

3.4 Evaluation And Style Transfer Augmentation
The evaluation step is straightforward. The user will provide a
texture sample to our system. Our system will first rescale the input
sample using auto-rescaling process (Fig. (7)) and compute style
features of the rescaled texture sample and classify it into a sub-
class by the pre-trained K-means model. The systemwill select those
procedural texture models which are also classified into this sub-
class, and the pre-trained CNNs of the chosen models will be used
to predict parameters. The system will finally generate procedural
textures for the user via the chosen procedural textures models and
their predicted parameters.
Ideally, our predicted procedural textures will match the over-

all visual appearance of the given image samples, but a visual gap
between synthetic procedural textures and real-world images may
still exist. We observe that rich spatial details in naturally captured
images often cannot be sufficiently modeled procedurally. To close
this gap, we introduce an optional neural style transfer step [Gatys
et al. 2016]. We treat our generated procedural texture as the content
image and the given texture sample as the style image. Similar to
[Gatys et al. 2016], we run optimization algorithm on our procedural
texture to make its style gradually match the texture sample. Sev-
eral experimental results (see Fig. (12), (13), (16) and (17)) show this
image augmentation can make our generated procedural textures
become more realistic and close to naturally captured textures. One
drawback of this optional step is the loss of editability because it en-
forces a transformation from the graph representation back to pixel
domain. Another concern is the degeneration of the quality of trans-
ferred results when users gradually edit procedural textures away
from initial prediction (see Sec. (4.5) for more discussion). Though
optimization of style can take a few minutes, the state-of-the-art
algorithms such as [Huang and Belongie 2017] may accelerate this
procedure into real-time with pre-trained neural network.

3.5 Scalability
It is worth noticing that performing style-based clustering on real-
world textures can improve the scalability of our framework, since
we can add new procedural textures to existing classes of textures
guided by style-based clustering results. For instance, we can visu-
alize the relationship between real-world textures and procedural
textures by projecting the style features of procedural textures into
the embedding space of real-world textures. Fig. (9) illustrates a
visualization for procedural grass textures. We can see our three
procedural models only cover three sub-classes of real-world grass
textures which indicates that we would need to add new procedural
models to our system to cover the all of the texture sub-classes
(sub-class 1 and sub-class 3). New procedural models should have
the similar visual appearance as the real-world images in the un-
covered sub-classes. Further, our system can warn the user when
their example falls into an uncovered sub-class that the results will
be poor, and that additional models need to be collected or created
to improve the results.

Fig. 9. Visualization of 2D embeddings of procedural grass textures. Labels
"o" with different colors represent real-world textures which are classified
into five sub-classes, while labels "+" with different colors indicate different
procedural models.

Input Chosen Model Unselected Model
Fig. 10. Model selection. Our system will only select models which have a
style similar to the sample texture, and will only estimate parameters for
the chosen models. The prediction results from those unselected models
do not achieve visually similar results because of style differences. Image
credit: top row leftmost, www.textures.com.

4 EXPERIMENTAL RESULTS
We demonstrate our framework with a system that includes four tex-
ture classes – brick, grass, shingle and stucco. For each procedural
model, we sample 80000 procedural textures and separate them into
a training set and a validation set where 75000 textures are used

ACM Trans. Graph., Vol. 38, No. 6, Article 186. Publication date: November 2019.

186:8 • Yiwei Hu, Julie Dorsey, and Holly Rushmeier

Input Predicted Input Predicted Input Predicted Input Predicted
Fig. 11. Validation on trained CNN models. We show the prediction results from given input textures using our CNN models. Each input texture is sampled
from the validation sets of our procedural texture models. Results show our predicted procedural textures can achieve good visual similarity with the input
texture.

for training and 5000 textures for validation. The data generation
process per procedural model takes about 6 to 8 hours on a PC with
Intel i7-5820k 3.30Hz. Our CNN is implemented by Pytorch and
trained on Nvidia GTX 980M 4GB GPU. For each CNN model, we
train 24 epochs with initial learning rate of 0.0001 and after every 8
epochs, the learning rate will decay by a factor of 10. The overall
training time per CNN takes 3 hours. For most of our procedural
models, the validation loss will stop decreasing after 15 epochs. The
pre-computation time cost for training our system can be signifi-
cantly decreased by using more powerful CPUs and GPUs. When
node graphs and parameters are chosen, the time cost for generating
procedural textures can vary among different procedural models
due to the difference in their complexity and implementations. High
resolution textures can be generated fast enough for interactive
editing and texturing. On average, 4K textures can be generated
in around 160ms while 8K textures can be generated in about 1.5s.
All the procedural textures presented in this paper are 1024x1024
which takes less than 50ms.

4.1 Validation on trained CNN models.
Wefirst verify the performance of our trained CNNmodels. The final
numerical errors, weightedMSEs are less than 0.15 for all procedural
models and the minimum MSE loss can be less than 0.005. Our
model achieves satisfactory visual approximations. Fig. (11) shows
some procedural texture samples in our validation sets and our
predicted procedural textures using CNN. Different texture samples
demonstrate that our trained CNN model is capable of inferring
reasonable parameters to reproduce visual appearance similar to
input procedural textures. Note that our predicted results are not
exactly the same as the given input exemplar since (1) errors exist
in our predicted parameters (2) and randomness in the procedural
texture generation process effects the distribution of many random
patterns such as the dirt and paint effects on brick texture samples.

4.2 Validation on Inverse Modeling System.
We then demonstrate our inverse modeling system can select the
appropriate procedural models to predict parameters for given input
real-world texture sample. The effects of our model selection using
sub-classes can be seen as Fig. (10). Predicted textures from models
selected by our system give visually appealing results, while synthe-
sized textures from unselected models are not visually similar to the
input. For instance, when given input is a concrete-like brick texture,
fitting the texture with a stone-style procedural model is impossible.
Similarly, given a rectangularly shaped shingle texture, a rounded
shaped procedural shingle model cannot fit it well. Style differences
are also salient in non-structural textures such as stucco textures.
Fig. (12) and Fig. (13) demonstrate our system can generalize very
well to given real-world texture samples by using model selection
to chose the appropriate model to predict the parameters. Various
styles of textures can be approximated via procedural models. All
the rendered textures here are lit by direct sunlight as diffuse sur-
faces. However, our system generates SVBRDF maps for users, so
high-quality rendering can be achieved if using global illumination
and sophisticated reflection models.
Figures (12)(13) show that the last optional style transfer aug-

mentation step, though causing loss of the editability of procedural
modeling, can further improve the visual quality and add detail
information to the generated procedural textures. Style transfer can
also help produce extended photo-realistic textures e.g. Fig. (17).

4.3 Comparison with Optimization-based Method
For comparisons, we know of no previous method that deals with
parameter prediction for large-scale procedural texture models. We
compare our CNN-based method with optimization-based methods
which aim to solve Eq. (1) directly. Results (Fig. (15)) show that our
CNN-based method can outperform both gradient-based (L-BFGS-B)
or gradient-free (Powell) optimization methods in term of visual

ACM Trans. Graph., Vol. 38, No. 6, Article 186. Publication date: November 2019.

A Novel Framework For Inverse Procedural Texture Modeling • 186:9

Input Albedo Normal Rendered Style Augmented
Fig. 12. Validation on inverse modeling system. Given an input real-world natural image sample, our system can chose proper procedural models to predict
parameters and generate albedo maps and normal maps. Results show that our rendered texture can have high visual similarity with natural input textures.
The final style-transfer augmentation step can further improve the quality of the procedural texture. Examples include brick textures and grass textures. Image
credit: top row leftmost, share.substance3d.com, CC BY 4 license; fourth row leftmost, seamless-pixels.blogspot.com; fifth row leftmost, creativemarket.com;
bottom row leftmost, depositphotos.com.

ACM Trans. Graph., Vol. 38, No. 6, Article 186. Publication date: November 2019.

186:10 • Yiwei Hu, Julie Dorsey, and Holly Rushmeier

Input Albedo Normal Rendered Style Augmented
Fig. 13. Validation on inverse modeling system (Cont.). Examples include shingle textures and stucco textures. Image credit: third row leftmost, depositpho-
tos.com.

ACM Trans. Graph., Vol. 38, No. 6, Article 186. Publication date: November 2019.

A Novel Framework For Inverse Procedural Texture Modeling • 186:11

Texture examples Procedural Textures Textured Mansion Edited Textures Textured Mansion
Fig. 14. Texturing large-scale scenes in high-resolution. Procedural textures provide a powerful tool to texture complex scene with high-resolution non-repetitive
textures. Given exemplar textures, our system converts them into procedural textures and textures the mansion model. Users can also tune the parameters
and achieve fast visual feedback using the procedural models.

Input Ours L-BFGS-B Powell

L2=0.070 L2=0.118 L2=0.058

L2=0.127 L2=0.199 L2=0.136
Fig. 15. Comparison with optimization-based methods for parameter
estimation. Our CNN-based method can outperform both traditional
optimization-based methods in visual similarity of structure and hue. Aver-
age L2 error is provided below each fitted result. Image credit: second row
leftmost, seamless-pixels.blogspot.com.

similarity. Both optimization methods are implemented using SciPy
[Jones et al. 2001] package and we set maximum iteration number
as 1000. Since the gradient of procedural model д is unreliable,
gradient-based approach cannot estimate appropriate parameters
in both cases, and it is trapped into local minimum after 50∼100
iterations. The Powell method can achieve plausible results with a
smaller average L2 error than ours in the shingle case, but it still
fails to recover structures of the shingle exemplar and also estimates
incorrect hue and density values for the grass texture sample. The
Powell method takes more than 10 minutes to converge while our
CNN prediction takes only microseconds.

4.4 Applications
Converting a pixel-based texture into a procedural texture has many
applications other than simply being treated as a mathematical
problem. Procedural modeling provides a powerful tool to control

Input Predicted Edited Augmented
Fig. 16. Procedural texture editing. By converting given input texture sample
to a procedural texture using our system, editing becomes convenient and
users can only change few parameters to alter texture appearance such as
damaging more edges. The edited image can be further augmented by a
style-transfer process.

Fig. 17. High-resolution Texture Expansion. Given an input texture (lower
right corner), we use our system to generate a procedural counterpart. With
this procedural model, we can procedurally expand its size and generate
randomized patterns. Finally, we transfer it back to pixel representation to
achieve a high-resolution photo-realistic texture (2048x1024). Image credit:
inset, share.substance3d.com, CC BY 4 license.

ACM Trans. Graph., Vol. 38, No. 6, Article 186. Publication date: November 2019.

186:12 • Yiwei Hu, Julie Dorsey, and Holly Rushmeier

Input Predicted Edited(1) Edited(2) Edited(3)
Fig. 18. Applicability of Style Transfer Augmentation. The upper row shows
procedural textures and the lower row shows their corresponding style-
transferred results using the input as style image. We show the quality
of style-transferred gradually degrade when the procedural models are
modified away from the original predicted results. From predicted results
to Edited(1), we remove the color variation among bricks and delete several
bricks procedurally. From Edited(1) to Edited(2), we clear the painting and
restore damaged edges. From Edited(2) to Edited(3), we change the overall
structure of the brick wall.

the appearance of the textures and allows textures to be extended to
arbitrary resolution. Fig. (17) shows an example of high-resolution
texture expansion.

4.4.1 Procedural Texture Editing. Texture appearance can be edited
procedurally. Seen as Fig. (16), we can utilize our inverse modeling
system to convert the given texture into procedural representation
and then change the appearance of the procedural texture only
by tuning a few parameters or directly changing the node graph
without requiring manually editing the image pixel-by-pixel. When
the user wants to apply small changes to the texture appearance,
they can also apply style-transfer augmentation to transfer the
procedural textures back to pixel-based representation to improve
the quality of the final result. The applicability of style transfer in
significant appearance changes will be discussed in Sec. (4.5)

4.4.2 Fast Scene Texturing in High-resolution. Procedural textures
enables users to texture large-scale 3D scenes in high resolution.
With the predicted procedural model, designers can be free from
manually tiling small texture patches and struggling with low reso-
lution and repetitive texture patterns. They can either bake high-
resolution e.g. 4K or 8K procedural textures to texture their scenes or
directly evaluating pixel values procedurally on texture coordinates.
Fig. (1) and (14) demonstrate this effective and efficient texturing
process. The user can also have quick visual feedback when edit-
ing the appearance of the textures by altering the parameters of
procedural models.

4.5 Applicability of Style Transfer Augmentation
The last optional style transfer step in our framework is an efficient
way to bridge the gap between predicted procedural texture im-
ages and real-world textures with highly stylized details e.g. Figs.
(12)(13)(17). The style transfer works well on slightly changed pro-
cedural textures, but significant editing can modify the procedural
textures far from original input texture samples, making the input
sample no longer an appropriate style image target. As shown in Fig.
(18), after obtaining the procedural texture, we gradually edit the

Input Predicted Style Augmented
Fig. 19. Failure cases. Upper row shows an example of reconstructing leaf
textures by procedural grass, and lower row shows a case of using our
procedural brick models to estimate irregular-structured bricks.

parameters of the procedural model to simplify the texture appear-
ance. The style-transferred result in Edited(1) achieves good visual
quality since minor changes are applied. Style transfer approach
fails in Edited(2) and Edited(3). For instance, we actually want to
eliminate white paint in Edited(2), but the transferred result has
unwanted white noises. When we significantly change the structure
of the brick texture, the style transfer produces incorrect results
(Edited(3)) because the overall appearance of the procedural texture
is very different from the original input.

5 LIMITATIONS AND FUTURE WORK
In the previous section, we have demonstrated that our inverse
modeling framework can provide high-quality procedural textures
to users by example. Our framework can be extended to arbitrary
numbers of classes by collecting additional natural images and user-
shared procedural models. However, challenges still exist.

First, our system requires each procedural texture model to train
a counterpart CNN to regress the parameters. Too many pre-trained
neural network will occupy a large amount of storage. Training one
single neural network that can simultaneously choose the proce-
dural model and predict parameters for all the procedural models
is an appealing solution but may degrade the quality of prediction
results.
Second, our system relies on training multiple neural networks

in the training process requiring a lot of computation both in the
data generation phase and in the back-propagation phase which
are about 9∼11 hours per procedural model. A possible solution is
a more sophisticated sampling approach for efficient parameters
space sampling. In our implementation, we randomly sample the
parameter space and generate the SVBRDF maps. However, pro-
cedural textures generated by randomly sampled parameters may
look unnatural. Only some parameter combinations can produce
visually satisfactory textures. Mathematically, unnatural textures
will not effect the solution of a parameter regression problem, but a
refined sampling strategy could accelerate the training process.

ACM Trans. Graph., Vol. 38, No. 6, Article 186. Publication date: November 2019.

A Novel Framework For Inverse Procedural Texture Modeling • 186:13
in
pu

t
pr
ed
ic
te
d

diffuse+IBL GGX+SL GGX+IBL
Fig. 20. Variation in Illumination Conditions. We test our our model’s sensi-
tivity to illumination variations by synthetic data. Input textures are ren-
dered under different reflection models and lighting conditions. IBL refers to
Image-Based Lighting and SL refers to Spherical Lighting. We use our CNN
to estimate parameters for these inputs and render the predicted albedo
map and normal map using diffuse model and direct illumination, which
is the same as our data generation process. Our estimation is reasonable
for the first case but cannot reproduce high-frequency lighting in later two
cases.

in
pu

t
pr
ed
ic
te
d

Fronto-parallel Tilt (30◦) 90◦ rotation
Fig. 21. Variation in Orientations. We validate our CNN model on syn-
thetic textures without rectification. Input textures are posed in different
orientations such as fronto-parallel, tilt (30◦) or 90◦ rotated.

Third, additional impact factors such as lighting conditions and
orientations are worth considering in our framework to further im-
prove the robustness of our model. For instance, since our training
data are rendered using a diffuse BRDF model with direct illumi-
nation, high-frequency effects may not be modeled reasonably in
our framework. As seen in Fig. (20), when testing on a texture ren-
dered under a diffuse model with environment maps (not direct
sunlight), our model can correctly generate visually similar textures.
While testing on textures rendered under a specular BRDF model
(GGX) which yield high-frequency variations, our model estimates
incorrect albedo values because the diffuse model cannot reproduce
specular highlights. Nevertheless, the overall structures of estimated

textures still match. Also, Fig. (21) shows our CNN prediction per-
form robustly with a slightly tilted view (30◦) but it cannot handle
larger rotations. A promising solution is to consider a complex shad-
ing model and illumination in our framework, as well as to expose
more parameters in the procedural models e.g. rotation or tilt to
simulate possible situations in the real world.
Finally, since our system is driven by a collection of real-world

textures and procedural assets, the entire texture space that our sys-
tem can cover is limited to classes in the system’s database. Given
an arbitrary unseen class of textures, our framework cannot provide
a correct procedural model. Fig. (19) shows two representative fail-
ure cases where given images are not considered in our prototype
system. Since the shape of leaves and unique structure of the given
brick sample are not covered in our collected procedural models,
our system fails to provide matched visual appearance. The style
transfer step can eliminate some defects but still suffer from incor-
rect shape and structure. The major problem is that our system lacks
the ability to infer the diversified internal structure of a node graph
from an arbitrary texture sample, and thus cannot take advantage of
the powerful representation ability of the node graph itself. We rely
on collecting a wide variety of existing node graphs. A grand chal-
lenge is to make full use of the possible combinations of nodes and
powerful structures in the node graph to automatically construct
(rather than select) a node graph given a texture sample.

6 CONCLUSION
We present a novel framework for inverse procedural texture mod-
eling by example. We design a data-driven inverse modeling system
based on a collection of real-world textures and procedural texture
assets. The user provides a texture sample to our system, and our
system generates visually similar high-quality procedural textures.
The core idea is to train an unsupervised clustering model to per-
form procedural model selection and train a CNN pool to learn an
inverse mapping from image space to parameter space for each
procedural models in our database. Given a texture sample, our
system will first identify appropriate node graphs in the database
which can best match the exemplary visual appearance, and then
predict parameters with pre-trained CNNs. With predicted param-
eters and selected procedural texture models, the user can obtain
procedural textures that can approximate the texture example. A
style transfer step can further improve the visual quality of fitted
procedural textures. Experiments show our proposed framework
can yield high-quality procedural textures and allow texture editing
and fast texturing. We hope our work can inspire more studies on
procedural representation of textures using new methods.

ACKNOWLEDGMENTS
Wewould like to thank all the reviewers for their valuable comments.
We also thank Benedict Brown, Ezra Davis, Sherry Qiu, Weiqi Shi
and Zeyu Wang for their thoughtful suggestions on our work. This
work was supported in part by NSF grant IIS-1747522. Finally, we
thank all the contributors of Allegorithmic Substance Share.

REFERENCES
Miika Aittala, Timo Aila, and Jaakko Lehtinen. 2016. Reflectance Modeling by Neural

Texture Synthesis. ACM Trans. Graph. 35, 4, Article 65 (July 2016), 13 pages. https:

ACM Trans. Graph., Vol. 38, No. 6, Article 186. Publication date: November 2019.

https://doi.org/10.1145/2897824.2925917
https://doi.org/10.1145/2897824.2925917

186:14 • Yiwei Hu, Julie Dorsey, and Holly Rushmeier

//doi.org/10.1145/2897824.2925917
Allegorithmic. 2019a. Substance Designer. https://www.allegorithmic.com/products/

substance-designer
Allegorithmic. 2019b. Substance Share. https://share.allegorithmic.com
Blender. 2019a. https://www.blender.org/
Blender. 2019b. Blender Materials. https://matrep.parastudios.de/
Valentin Deschaintre, Miika Aittala, Fredo Durand, George Drettakis, and Adrien

Bousseau. 2018. Single-image SVBRDF Capture with a Rendering-aware Deep
Network. ACM Trans. Graph. 37, 4, Article 128 (July 2018), 15 pages. https://doi.
org/10.1145/3197517.3201378

J-M Dischler, Karl Maritaud, Bruno Lévy, and Djamchid Ghazanfarpour. 2002. Texture
particles. In Computer Graphics Forum, Vol. 21. Wiley Online Library, 401–410.

Alexei A. Efros and William T Freeman. 2001. Image quilting for texture synthesis
and transfer. In Proceedings of the 28th annual conference on Computer graphics and
interactive techniques. ACM, 341–346.

Alexei A. Efros and Thomas K. Leung. 1999. Texture Synthesis by Non-Parametric
Sampling. In Proceedings of the International Conference on Computer Vision-Volume
2 - Volume 2 (ICCV ’99). IEEE Computer Society, Washington, DC, USA, 1033–.
http://dl.acm.org/citation.cfm?id=850924.851569

Bruno Galerne, Ares Lagae, Sylvain Lefebvre, and George Drettakis. 2012. Gabor
Noise by Example. ACM Trans. Graph. 31, 4, Article 73 (July 2012), 9 pages. https:
//doi.org/10.1145/2185520.2185569

Bruno Galerne, Arthur Leclaire, and Lionel Moisan. 2017. Texton noise. In Computer
Graphics Forum, Vol. 36. Wiley Online Library, 205–218.

Leon Gatys, Alexander S Ecker, and Matthias Bethge. 2015. Texture synthesis using
convolutional neural networks. In Advances in neural information processing systems.
262–270.

Leon A. Gatys, Alexander S. Ecker, andMatthias Bethge. 2016. Image style transfer using
convolutional neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 2414–2423.

Guillaume Gilet, Basile Sauvage, Kenneth Vanhoey, Jean-Michel Dischler, and Djamchid
Ghazanfarpour. 2014. Local random-phase noise for procedural texturing. ACM
Transactions on Graphics (TOG) 33, 6 (2014), 195.

Eric Heitz and Fabrice Neyret. 2018. High-Performance By-Example Noise Using a
Histogram-Preserving Blending Operator. Proc. ACM Comput. Graph. Interact. Tech.
1, 2, Article 31 (Aug. 2018), 25 pages. https://doi.org/10.1145/3233304

Xun Huang and Serge Belongie. 2017. Arbitrary style transfer in real-time with adap-
tive instance normalization. In Proceedings of the IEEE International Conference on
Computer Vision. 1501–1510.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2001. SciPy: Open source scientific
tools for Python. http://www.scipy.org/ [Online; accessed <today>].

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra. 2005. Texture optimization
for example-based synthesis. In ACM Transactions on Graphics (ToG), Vol. 24. ACM,
795–802.

Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk, and Aaron Bobick. 2003. Graphcut
textures: image and video synthesis using graph cuts. ACM Transactions on Graphics
(ToG) 22, 3 (2003), 277–286.

Ares Lagae, Peter Vangorp, Toon Lenaerts, and Philip Dutré. 2010. Procedural Isotropic
Stochastic Textures by Example. Comput. Graph. 34, 4 (Aug. 2010), 312–321. https:
//doi.org/10.1016/j.cag.2010.05.004

Laurent Lefebvre and Pierre Poulin. 2000. Analysis and synthesis of structural textures.
In Graphics Interface, Vol. 2000. 77–86.

Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. 2017a. Modeling Surface Appearance
from a Single Photograph Using Self-augmented Convolutional Neural Networks.
ACM Trans. Graph. 36, 4, Article 45 (July 2017), 11 pages. https://doi.org/10.1145/
3072959.3073641

Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi Hou. 2017b. Demystifying Neural
Style Transfer. In Proceedings of the 26th International Joint Conference on Artificial
Intelligence (IJCAI’17). AAAI Press, 2230–2236. http://dl.acm.org/citation.cfm?id=
3172077.3172198

Zhengqin Li, Kalyan Sunkavalli, and Manmohan Chandraker. 2018a. Materials for
masses: SVBRDF acquisition with a single mobile phone image. In Proceedings of
the European Conference on Computer Vision (ECCV). 72–87.

Zhengqin Li, Zexiang Xu, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmohan
Chandraker. 2018b. Learning to Reconstruct Shape and Spatially-varying Reflectance
from a Single Image. ACM Trans. Graph. 37, 6, Article 269 (Dec. 2018), 11 pages.
https://doi.org/10.1145/3272127.3275055

Gen Nishida, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes, and Adrien
Bousseau. 2016. Interactive Sketching of Urban Procedural Models. ACM Trans.
Graph. 35, 4, Article 130 (July 2016), 11 pages. https://doi.org/10.1145/2897824.
2925951

Ruggero Pintus, Ying Yang, and Holly Rushmeier. 2015. ATHENA: Automatic text
height extraction for the analysis of text lines in old handwritten manuscripts.

Journal on Computing and Cultural Heritage (JOCCH) 8, 1 (2015), 1.
K. Simonyan and A. Zisserman. 2014. Very Deep Convolutional Networks for Large-

Scale Image Recognition. CoRR abs/1409.1556 (2014).
Robert Tibshirani, Guenther Walther, and Trevor Hastie. 2001. Estimating the number

of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 63, 2 (2001), 411–423.

Lisa Torrey and Jude Shavlik. 2010. Transfer learning. In Handbook of research on
machine learning applications and trends: algorithms, methods, and techniques. IGI
Global, 242–264.

Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor S Lempitsky. 2016. Texture
Networks: Feed-forward Synthesis of Textures and Stylized Images.. In ICML, Vol. 1.
4.

Li-Yi Wei, Jianwei Han, Kun Zhou, Hujun Bao, Baining Guo, and Heung-Yeung Shum.
2008. Inverse Texture Synthesis. In ACM SIGGRAPH 2008 Papers (SIGGRAPH ’08).
ACM, New York, NY, USA, Article 52, 9 pages. https://doi.org/10.1145/1399504.
1360651

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk. 2009. State of the art
in example-based texture synthesis. In Eurographics 2009, State of the Art Report,
EG-STAR. Eurographics Association, 93–117.

Li-Yi Wei and Marc Levoy. 2000. Fast Texture Synthesis Using Tree-structured Vector
Quantization. In Proceedings of the 27th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’00). ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 479–488. https://doi.org/10.1145/344779.345009

Yang Zhou, Zhen Zhu, Xiang Bai, Dani Lischinski, Daniel Cohen-Or, and Hui Huang.
2018. Non-stationary Texture Synthesis by Adversarial Expansion. ACM Trans.
Graph. 37, 4, Article 49 (July 2018), 13 pages. https://doi.org/10.1145/3197517.
3201285

ACM Trans. Graph., Vol. 38, No. 6, Article 186. Publication date: November 2019.

https://doi.org/10.1145/2897824.2925917
https://www.allegorithmic.com/products/substance-designer
https://www.allegorithmic.com/products/substance-designer
https://share.allegorithmic.com
https://www.blender.org/
https://matrep.parastudios.de/
https://doi.org/10.1145/3197517.3201378
https://doi.org/10.1145/3197517.3201378
http://dl.acm.org/citation.cfm?id=850924.851569
https://doi.org/10.1145/2185520.2185569
https://doi.org/10.1145/2185520.2185569
https://doi.org/10.1145/3233304
http://www.scipy.org/
https://doi.org/10.1016/j.cag.2010.05.004
https://doi.org/10.1016/j.cag.2010.05.004
https://doi.org/10.1145/3072959.3073641
https://doi.org/10.1145/3072959.3073641
http://dl.acm.org/citation.cfm?id=3172077.3172198
http://dl.acm.org/citation.cfm?id=3172077.3172198
https://doi.org/10.1145/3272127.3275055
https://doi.org/10.1145/2897824.2925951
https://doi.org/10.1145/2897824.2925951
https://doi.org/10.1145/1399504.1360651
https://doi.org/10.1145/1399504.1360651
https://doi.org/10.1145/344779.345009
https://doi.org/10.1145/3197517.3201285
https://doi.org/10.1145/3197517.3201285

	Abstract
	1 Introduction
	2 Related Work
	2.1 Texture Authoring Systems
	2.2 Inverse Procedural Texture Modeling
	2.3 Texture Synthesis
	2.4 SVBRDF Acquisition With Deep Learning

	3 Method
	3.1 Data Collection
	3.2 Procedural Model Selection
	3.3 Learning Inverse Mapping With CNN
	3.4 Evaluation And Style Transfer Augmentation
	3.5 Scalability

	4 Experimental Results
	4.1 Validation on trained CNN models.
	4.2 Validation on Inverse Modeling System.
	4.3 Comparison with Optimization-based Method
	4.4 Applications
	4.5 Applicability of Style Transfer Augmentation

	5 Limitations and Future Work
	6 Conclusion
	Acknowledgments
	References

