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Figure 1: The leftmost input photo is altered with color styles horror, happy, David Fincher, and Wes Anderson learned from
feature films.

Abstract
Directors employ a process called “color grading” to add color styles to feature films. Color grading is used for
a number of reasons, such as accentuating a certain emotion or expressing the signature look of a director. We
collect a database of feature film clips and label them with tags such as director, emotion, and genre. We then
learn a model that maps from the low-level color and tone properties of film clips to the associated labels. This
model allows us to examine a number of common hypotheses on the use of color to achieve goals, such as specific
emotions. We also describe a method to apply our learned color styles to new images and videos. Along with
our analysis of color grading techniques, we demonstrate a number of images and videos that are automatically
filtered to resemble certain film styles.

1. Introduction

The colors and tones used in films are carefully choosen to
maximize emotional impact. For example, filmmakers use
warm colors to convey positive emotions, while high con-
trast and dark tones emphasize the bleakness of film noir
plotlines. While perceptual scientists have long observed
that colors are associated with specific emotions [Whe94,
OLWW04a, OLWW04b], feature film directors and cine-
matographers are masters at exploiting this relationship. Di-
rectors use a process called “color grading” to manipulate
color, and this process has received considerable attention in
film studies; for example, Bellantoni [Bel05] hypothesizes
correlations between various colors and the emotions of film,
while Hurkman [Hur10] provides a practitioner’s handbook
of how to perform color grading with various emotional
goals in mind.

However, to date the analysis of color grading techniques
has been entirely qualitative, consisting of "rules of thumb"

collected from practitioners, and observations from film
studies experts. In this paper, we data-mine the work of the
experts by analyzing the statistical properties of the use of
color in feature films. Specifically, we collect a large set of
feature film clips and manually attach labels, such as genre
(e.g., romance), emotion (e.g., sad), director (e.g., David
Fincher), and time period (e.g., 60s). We then learn a model
that maps color and tone properties of the clips to the associ-
ated labels. This learned model allows a deeper, evidence-
based understanding of the practice of color grading; we
demonstrate the power of the model by testing existing hy-
potheses on color grading techniques, as well as proposing
new ones. Our dataset and learned model also allow us to
perform two more practical tasks. One, given a new, un-
known film clip, we can predict various properties about it
such as genre, emotion, or even the film’s director. Two, we
can transform an existing photograph or video to better ex-
hibit one or more of the film properties we model. For ex-
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ample, we can transform a photograph to look more like a
horror film, or more like the films of Wes Anderson. While
manually-designed photo filters exist and are widely-used
(e.g., Instagram and Adobe SpeedGrade), our data-driven
technique shows how we can automatically derive a large
set of photo filters from the color grading techniques used
by the masters of color manipulation in feature films.

2. Related Work

While most filmmaking books stress the importance of us-
ing color styles [Lan10, And12], few books offer specific
rules to create them. Bellantoni [Bel05] discuss associa-
tions of common colors and emotions used in films; how-
ever, the relationships are multiple-to-multiple mappings
that make it hard to design effective filters. Professional col-
orists [Hul08, Hur10] describe a three-step process for color
grading: first, perform global luminance correction, second
perform global adjustments of hue and saturation, and finally
perform local adjustments on masked regions. Our pipeline
also focuses on global color and tone manipulation with au-
tomatic local adjustments to protect memory colors.

We are not the first to analyze the low-level statistics of
films. Brunick et al. [BCD13] analyze temporal trends of
shot duration, brightness, and color in films over the past
several decades. Others have used low-level statistics to pre-
dict the mood or genre of a film [WDC04, WC06, HX05].
These system typically use additional features such as mo-
tion and audio; we restrict ourselves to learning color styles,
since they are most useful for image and video filters.

Creating image filters that achieve various emotions
and moods is also a popular research topic. The systems
in [MSMP11, YP08, WYW∗10] typically use data from the
existing color literature (e.g., [Whe94]) or color social media
websites to create emotion or concept-labeled color themes,
which are then transferred to images using color transfer
techniques [RAGS01, PR10]. Csurka et al. [CSMS11] use
similar data to learn a model mapping color themes to natu-
ral language concepts. In contrast, we learn our color styles
from professional film clips, and do not use color themes as
an intermediate representation.

Example-based methods are another approach to style
enhancement. While color transfer techniques [RAGS01,
KMHO09, PR10, HSGL11] exactly map the colors of a sin-
gle example image to the target, Bonneel et al. [BSPP13]
achieve temporally consistent color transfer between videos.
Wang et al. [WYX11] learn models of style mapping be-
tween registered image pairs before and after adjustment.
Our work build parametric models of styles from multiple
examples, which allows more flexibility than a single exam-
ple during stylization. Also, our method obviates the need
for the user to find an example exhibiting a desired style.

Achanta et al. [AYK06] present a set of rules for manip-
ulating videos to achieve various emotions; they manipulate

Emotion Genre Director Period Location
happy action Tim Burton 60s western
excited comedy David Fincher 70s college
mysterious crime Peter Jackson ancient country
tender drama Wes Anderson
neutral fantasy Coens Brothers
melancholy film-noir Bong Joonho
discomfort history
fear horror
sad romance

war

Table 1: The labels of color styles from five categories.

properties such as framing and speed that go beyond our fo-
cus on color and tone. Also, our methods are derived directly
from films rather than created by hand.

Our work shares the motivation of Doersch et
al. [DSG∗12], who use data to extract the visual signatures
of urban architectural styles; we focus on characterizing
the color styles of films. Finally, Palermo et al. [PHE12]
analyze photographic color and tone in order to predict
the decade in which a vintage photograph was taken; we
similarly examine films to extract their color characteristics.
However, they do not attempt to create filters.

3. The Data-driven Study

We use a data-driven scheme to create models of color styles.
We collect a dataset of 569 clips extracted from 52 main-
stream feature films, each of which consists of one or sev-
eral shots with consistent color styles. The durations of the
clips range from 3 seconds to 5 minutes. To avoid handling
DVDs and processing entire films, we extract the clips from
film trailers and other short excerpts available online. Clips
are temporally limited to single scenes so that the color style
is continuous and constant. We select films that well sample
our list of labels (e.g., we require several films of each of the
directors that we study, several 60s and 70s films, etc.).

We manually label each clip by the styles it conveys. The
style labels come from five categories: Emotion, Genre, Di-
rector, Period, and Location. The complete style labels are
listed in Table 1. Multiple labels could be associated with
one clip. For example, a single clip from David Fincher’s
film Panic Room could be simultaneously labeled with fear,
crime, film-noir, and David Fincher.

Given the labeled training set, we first perform studies to
identify the color styles that are visually distinctive and rec-
ognizable. We construct and analyze parametric models to
describe these styles, and use these models to examine hy-
potheses on the practices of color grading.
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Emotion
happy excited mysterious tender neutral melancholy
0.726 0.599 0.788 0.605 0.644 0.558

discomfort fear sad
0.650 0.622 0.553

Genre
action comedy crime drama fantasy film-noir
0.727 0.848 0.651 0.660 0.762 0.739

history horror romance war
0.740 0.711 0.679 0.593

Director
Tim Burton David Fincher Peter Jackson

0.808 0.844 0.801
Wes Anderson Coen Brothers

0.894 0.745

Period Location
60s 70s ancient western country college

0.823 0.783 0.684 0.762 0.618 0.711

Table 2: The classification accuracies G =
√

Tnr×Tpr of
different style labels. A value of 1 indicates perfect classifi-
cation.

3.1. Identifying Distinctive Color Styles

We assume that a color style label is visually distinctive if it
is easy to distinguish clips tagged with that label from clips
that are not. We train supervised classifiers on each style of
interest (positive samples have the style label, and negative
samples do not); classifiers with high accuracy indicate dis-
tinctive styles.

We choose features that are most commonly used by pro-
fessionals in color correction [Hur10]. The features come
from three aspects of color: luminance, hue, and satura-
tion. Since colorists often treat different bands of luminance
separately, such as highlights, mid-tones, and shadows, we
model luminance with a 10-bin histogram in the log2 do-
main to decode gamma. Colorists also treat hue in differ-
ent luminance bands separately (e.g, by making the shad-
ows redder). So, we compute a 10-bin histogram of hue in
each of three bands (highlights, midtones, and shadows)†.
For saturation, we compute the statistics within different lu-
minance bands similarly; however, we use only the average
of the highest saturation zone (top 0.1%) in log2 domain, as
suggested by [XADR12]. We find that the highest saturation
values most correspond to our perception of overall image
saturation. In total, 10 + 10× 3 + 1× 3 = 43 features are
computed for each clip.

† Luminance bands are defined as highlights (192,255], midtones
(64,192], and shadows [0,64] in gamma-encoded sRGB space.

We then train a binary classifier using AdaBoost, which
builds a classifier as an ensemble of decision stumps. We
experimented with a number of sets of features, and choose
this set by trial-and-error. Too few features reduces accu-
racy while too many leads to overfitting. This set of fea-
tures offers a reasonable trade-off between these two prob-
lems. We also experimented with nearest-neighbor and lo-
gistic regression, and found AdaBoost performed best. Also,
we benefit from AdaBoost for interpreting selected features,
as detailed in Section 3.2. Since our data is imbalanced
(many more negative than positive samples for each label),
we use a version of AdaBoost specialized for imbalanced
data [SKWW07]. Specifically, during training the cost of a
false positive is set to 1 while the cost of a false negative
is set to c, where c > 1 increases the importance of positive
samples. We set the value of c separately for each label using
10-fold cross-validation. We measure the performance of our
classifiers in the presence of imbalanced training samples by
combining the true negative rate Tnr and true positive rate
Tpr into a single geometric mean G =

√
Tpr×Tnr [KHM98],

again using 10-fold cross-validation. The results are listed in
Table 2. We can observe that a subset of styles are very dis-
tinctive in terms of classification performance, while others
are not.

3.2. Parametric Models of Color Styles

An AdaBoost classifier consists of a sequence of weak learn-
ers that each perform binary classification. The final Ad-
aBoost output is a weighted sum H of the output values (1
or −1) of each weak learner; if H > 0 the classification is
positive and the clip conveys the color style. The magnitude
ofH is the margin of the prediction and can be interpreted as
the stylization strength of an input clip. We use this strength
value in our image filtering application in Section 4.

Each weak learner is a decision stump that simply com-
pares a single feature against a threshold value. Values on
one side of this threshold indicate that a clip is more likely
to reflect the color style being tested. We can aggregate all
these stumps into a visualization (Figure 2) indicating ranges
of each feature that are preferred by a color style (brighter
values indicate preferred ranges). To compute the values in
this visualization, we first sum all the decision stumps. That
is, for a decision stump with weight w and threshold k on a
particular feature, we add −w to all values below k, and w
to all values above k in that feature’s row in the diagram.
Then, we shift and normalize all values so that the low-
est value across all rows maps to 0 (black), and the highest
value across all rows maps to 1 (white). This diagram visu-
ally shows the parametric model of color style represented
by an AdaBoost classifier, and helps us to better understand
complicated styles (Section 3.3.5). See supplemental mate-
rials for the visualization of other color styles.
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Lum. 
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Sat. in 
3 lum. bands

Hue in highlight
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Hue in mid‐tone
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Hue in shadow
portion 1~10

0.0 1.0David Fincher1.0Wes Anderson0.0

Figure 2: The visualized AdaBoost classifier of the color
style Wes Anderson and David Fincher. Each row represents
a feature, which ranges from 0.0 to 1.0 after normalization.
The preferred feature ranges for this style are brighter in in-
tensities.

3.3. Color Grading Hypotheses

Given our dataset and parametric model of color style, we
can test existing hypotheses on color styles from the color
grading literature, and formulate new hypotheses.

3.3.1. Positive Emotions

Bellantoni [Bel05] writes that warm colors are used to ac-
centuate happy emotions in films. We thus test the null hy-
pothesis that warmer colors have equal occurrence in happy
clips and non-happy clips, against the alternative hypothe-
sis that warmer colors occur more often in happy clips. We
compute the portion of warm colors (hue in [−30◦,90◦], i.e.,
magenta, red, orange, and yellow) in every clip, and employ
a one-tailed t−test to compare the average portions of warm
colors in happy and non-happy clips. The rejection of N0
against NA is confirmed (p∗ = 3× 10−6), meaning that this
simple rule is indeed used by filmmakers. Figure 3 shows
the distribution of mean hues in happy and non-happy clips,
which visually confirms our findings. See supplemental ma-
terials for more visualizations of the hypotheses we test in
this section.
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hue meanFigure 3: The polar distributions of mean hues of happy
clips and non-happy clips.

Hurkman [Hur10] suggests boosting yellows in high-
lights, as well as blues in shadows to convey tender feelings.

We compute the hue occurrence in highlight and shadows,
finding that boosted yellow is indeed present (p∗ = 0.007),
while increased blues are not observed (p∗ = 0.99).

Melancholy is one of the more complicated emotions in
films. Hurkman suggests several techniques to achieve it: 1)
a mild (brighter) black, 2) a pastel combination of greens
and blues in the highlights, or 3) a pale blue cast in the shad-
ows. Hypothesis 1 is quantitatively restated as the black level
(lowest luminance) in melancholy clips are higher. How-
ever, the average blacks for melancholy are only slightly but
not significantly higher (−10.93 vs −11.06 in log domain,
p∗ = 0.29). Second, we find blues to be slightly but not sig-
nificantly stronger in highlights (occurrence 0.39 vs 0.35,
p∗ = 0.124), while green is very significantly boosted (oc-
currence 0.25 vs 0.17, p∗ = 0.0008). Finally, checking the
tones in shadows, we confirm a stronger blue cast (occur-
rence 0.26 against 0.20, p∗ = 0.0065).

3.3.2. Negative Emotions

Both Hurkman and Bellantoni suggest using blue casts to
convey sad and fear emotions. Our tests confirm this intu-
ition. In sad clips, average occurrence of blue tones is 0.463,
significantly higher (p∗ = 0.00033) than 0.280 in non-sad
clips. The fear clips show 0.4313 average blue occurrence
while non-fear clips have only 0.2643.

The more subtle negative emotion of discomfort can be
associated with multiple tones: red as defiant and anxious,
orange as exotic and toxic, and green as corrupt and poi-
sonous [Bel05]. Within our dataset, we do not observe a sig-
nificant increase in red and orange in discomfort clips. This
could be explained by the fact that these two colors are asso-
ciated with many other emotions, both positive and negative.

On the other hand, we indeed find significantly more
green in discomfort clips than in others, with occurrence
0.152 vs 0.091, and p∗ = 1.9×10−5. Since green tones are
less naturally used as an overall color cast, it has fewer asso-
ciations with positive emotions and thus are widely used in
discomfort styles.

3.3.3. Genres

Bellantoni proposes that red and yellow hues are used to
heighten a sense of romance. We confirm this hypothesis: the
average occurrence of red/yellow in romance flips is 0.676,
much higher than 0.582 in non-romantic clips.

While [Bel05] describes the use of purple and blue in
fantasy films, we do not find statistical evidence. Blue is
slightly more common but purple show equal occurrence.
However, we do find significantly more cyan in fantasy clips
(with occurrence 0.325) than in non-fantasy clips (occur-
rence 0.167), with p∗ < 1×10−7.

3.3.4. Vintage Styles

[Hur10] describes the following method to achieve a vintage
style: 1) boost global contrast, 2) reduced saturation, and 3)
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Input Luminance Hue Saturation

Figure 4: The pipeline of manipulating an input frame. The insets show the decomposition of luminance bands, where yellow
shows highlights, red shows midtones, and blue shows shadows. Hues/saturations in different bands are manipulated separately.

add a yellow or magenta cast. We use our labels 60s and 70s
as an approximation of vintage.

For global contrast, we do not find an average increase of
global contrast in 60s clips, but significantly increased con-
trast in 70s clips. We do not observe a significant difference
in saturation between 60s/70s and other film clips. Lastly,
higher occurrence of yellow is confirmed in both 60s and
70s clips, with p∗ at 0.031 and 0.029, respectively. How-
ever, magenta has a slightly higher occurrence in 70s clips
but no increased occurrence in 60s.

3.3.5. Color Styles of Directors

In this section we examine the unique color styles of two
directors, Wes Anderson and David Fincher. Note that we
only examine low-level color statistics; both directors have
many other aspects to their visual styles, from set designs to
costume selection.

Figure 2 (left) visualizes the classifier associated with the
Wes Anderson color style. By examining the darkest and
brightest values, we can see that the prevalence of shad-
ows is low (the white in the first row indicates a prefer-
ence for a small value for the shadow bin), and the mid to
high tones are generally large. Thus, the films of Wes An-
derson tend to be bright with low global contrast and bright
blacks. Numerically, his blacks are on average higher than
other films (−10.12 versus −11.09 in log2 domain, with
p∗ = 4.1× 10−5), average luminance is higher (−4.59 vs
−6.01, p∗ = 2× 10−6), and highlights are less prevalent
(−0.543 vs −0.331, p∗ = 0.0097). For hue, we observe a
prevalence of red-orange hues (63.1% vs 33.4% in other
films, p∗ < 10−6). In supplemental materials we visualize
the distributions of luminance and hue for Wes Anderson
versus other films.

We next examine the color style of David Fincher using
the patterns in Figure 2 (right). Luminance exhibits a strong
pattern; shadows are very prevalent (first two rows in lu-
minance), while highlights are rare (the 10th row in lumi-
nance). Overall, Fincher’s films exhibit a low-key with large
shadows. Numerically, the shadow portion is 24.1% versus
14.2% in other films (p∗ = 2×10−6), and the highlight por-
tion is 2.91% versus 5.27% in other films (p∗ = 0.0052). For

hue, we observe a high prevalence of green hues in the high-
lights (44.3% versus 25.0%, p∗ = 1× 10−6) and shadows
(43.5% versus 16.8%, p∗ < 10−6). Green is not a typical
lighting color, which suggests it is purposely added to create
a suspenseful atmosphere. We show distributions of lumi-
nance and hue for Fincher’s films in supplemental materials.

4. Adding Color Styles

In this section we describe a method to add one of our mod-
eled color styles to a new film clip or still image. Existing
mobile apps like Instagram as well color grading software
like Adobe SpeedGrade offer many filters that can achieve
a variety of color styles; however, they are all hand-coded.
We show a methodology to automatically create filters from
labeled data, and in particular, film clips labeled by style.

4.1. Overview

To add a color style S to an input clip v, we manipulate the
same features of v used in our classifier in Section 3.1. Recall
that these features were designed to model the same prop-
erties manipulated by professional color correctors. We use
three categories of features: luminance (a 10-bin histogram),
hue (three 10-bin histograms corresponding to hues in high-
lights, midtones, and shadows), and saturation (largest satu-
ration bin in highlights, midtones, and shadows). Following
the practice of colorists [Hul08, Hur10], we manipulate lu-
minance, hue and saturation of the input clip in a sequential
order. When manipulating hue, the hues in highlights, mid-
tones, and shadows are edited sequentially (Figure 4).

When manipulating each feature F (F ∈ {luminance, hue,
saturation}) of clip v, we first find k clips of style S from the
training dataset (569 clips), creating a target set C. These
clips are chosen according to two criteria: one, they should
have similar features to clip v, and two, they should exhibit
strong stylization strength. That is, they should be strong
rather than subtle examples of the color style. Then, we per-
form a multiple-to-one style transfer from the clips in C to v.
Specifically, we compute a target set of features by averag-
ing the features across the clips in C. We then use the target
features to update the original features of v.
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4.2. Selected the target Set C

To select a target set C we first need to define a similarity
measure d between features of two clips in terms of their
features F and F ′. The distance d is computed differently
for luminance, hue, and saturation features. Note that we se-
lect a different set C of k clips for each feature; one set for
luminance, three for hue (for highlights, midtones, and shad-
ows), and three for saturation.

For luminance, we compute d as the L1 distance over the
10-bin histogram, or d(F,F ′) = 1

10 ∑
10
i=1 |Fi−F ′i |. For hue,

there are three 10-bin histograms describing hues in high-
lights, midtones, and shadows, separately. We again use L1
distance for each histogram, and select three sets of clips
(one per histogram). Finally, the largest saturations bins in
highlights, midtones, and shadows define the three scalar sat-
uration features. We use Euclidean distance to select a dif-
ferent set C of clips for each scalar.

Selecting clips C similar to v prevents unnatural styliza-
tion of v. However, the clips C should also be strongly styl-
ized to avoid overly subtle results. Recall that in Section 3.1
we compute a stylization strength H of a clip using its Ad-
aBoost score. Here we use the part of H that is contributed
only by feature F , defined as HF , to define the stylization
strength of feature F . To select clips that are both similar
and strongly stylized, we select the k clips that minimize

d(F,F ′)− s ·HF′ , (1)

where we set s = 0.1 and use k = 3 for all experiments in
this paper.

4.3. Feature Manipulation

The next step is to compute a target feature F ′ by averag-
ing the features from the selected clips C. F ′ is then used to
update the original feature F of clip v, as follows.

Luminance F ′ is a new averaged 10-bin histogram; we
use standard histogram matching [GW07] to convert the
original luminance histogram F of v to F ′.

Hue Since we have three source hue histograms corre-
sponding to highlights, midtones, and shadows, separately,
we apply histogram matching to each luminance band se-
quentially. However, if we simply use histogram transfer ar-
tifacts can result, as humans are very sensitive to odd hues.
We therefore regularize the transfer in several ways, as de-
scribed in Section 4.4.

Saturation Transfer from the original saturation his-
togram to a target saturation histogram is accomplished by
simply shifting the original histogram to align the largest sat-
uration bins, since we only use this bin as a feature. This
shifting is done in the log2 domain, requiring the regulariza-
tion techniques in Sections 4.4.3 and 4.4.4 to avoid artifacts.

Input hue h

Output 
hue h’

0 1
0

1
h’ = h + T(h)

Input hue h

T

0 1
0

Hue shifting function T(h)

‐0.5

0.5

Figure 5: The histogram matching process will map the
original hue h to a new hue h′, which is formulated by a
a shifting function T (h) = h′ − h. Note that since h is a
circular value, T (h) must satisfy circular continuity, i.e.,
T (0) = T (1).

4.4. Regularization on Hue Shifting Function

Histogram transfer maps each original hue value h to a new
hue h′. We can define this transfer using a hue shifting func-
tion T (h), where h′ = h+T (h), or T (h) = h′−h (Figure 5).
T is a discrete function with input h uniformly discretized in
[0,1] with step 4h = 0.001. Note that we are dealing with
hues in one luminance band; other bands are treated in the
same manner. There are four problems with T that can cause
artifacts. First, two originally close hues can be mapped to
very different hues. Second, hues for objects with strong hu-
man expectations of specific colors, such as sky or skin, are
mapped to unnatural hues. Third, hue computation can be
unstable in certain areas, such as over-/under-exposed areas
and low-saturation areas. Fourth, the hue transfer functions
for three luminance bands are different. So, a visible jump
may occur between two neighboring pixels of the same hue
if their luminance values fall into two different bands. Ra-
bin et al. [RDG10] use non-local filters to alleviate the first
problem. Instead, we use the following regularization tech-
niques to deal with all sources of artifacts.

4.4.1. Enforcing Continuity of Hue Shifting

Once an initial hue shifting function T is computed using
histogram transfer, we smooth it by applying a 1D box filter,
where the filter radius is 0.07. Since hue is a circular value
defined in [0,1], all computations about hue are applied in a
circular manner.

A smoothed T can still map two originally close hues
to very different hues if T lacks good Lipschitz continu-
ity. That is, given two hues h1 and h2, shifted h∗1 and h∗2
should satisfy the Lipschitz condition |h∗1−h∗2 | ≤ β|h1−h2|,
where β is a constant. For hue transfer, we expect a relatively
small β, which can be obtained by limiting the magnitude of
the derivatives of T since large derivatives in T pull apart
similar hues (Figure 6).

Therefore, we compute a better mapping function T̂
whose derivative T̂ ′ is the clipped version of T ′. We clip the
derivatives within [−β,β], where β = 3 in our experiments.
Since we need to maintain the circular property of the hue
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Figure 6: We enforce better Lipschitz continuity of T by edit-
ing T ′. Note that T ′ also satisfies circular continuity, i.e.,
T ′(0) = T ′(1).

shifting function, i.e., T̂ (0) = T̂ (1), we must guarantee∫ 1

0
T̂ ′(h)dh =

∫ 1

0
T ′(h)dh. (2)

So, the clipped area A (where A =
∫ h2

h1
T̂ ′(h)dh, see the right

in Figure 6) must be added back to T̂ ′. To minimize the ef-
fect on hues away far from clipped regions [h1,h2], we boost
the values of T̂ on both sides of [h1,h2] so that A/2 is added
to left and right sides. Formally, we compute two functions,
δL and δR, to add to clipped T ′. Function δL is defined on
[hL,h1], and δR on [h2,hR], and is otherwise 0. The delta
functions must satisfy (Figure 6):∫ h1

hL

δL(h)dh =
∫ hR

h2

δR(h)dh =
A
2

. (3)

We define δL(h) and δR(h) as

δL(h) =
h−hL

h1−hL
· (β−T ′(h)) (4)

δR(h) =
hR−h
hR−h2

· (β−T ′(h)) (5)

where hL and hR are computed by plugging Eqn. 4 and 5 into
Eqn. 3. If there are multiple peaks or valleys to be clipped,
they are clipped sequentially.

Finally, we get the new derivative function T̂ ′, which is
the sum of the clipped T ′ and δL and δR. We integrate back
to obtain the new hue shifting function T̂ , using the initial
condition T̂ (h0) = T (h0). h0 is the farthest hue from the
clipped region [h1,h2]. Note that since we use discretized T
in practice, T ′ is computed by 4T/4h, and integration is
computed by summation.

4.4.2. Memory Color Protection

Humans have expectations for the colors of certain famil-
iar objects, such as skin; these are often called memory col-
ors [Bar60, YBDR99]. We protect the hues of two types of
memory colors: skin and sky.

The average memory color of skin was first identified
by [Bar60]. The Gaussian distribution of memory skin col-
ors on screens was identified by a large-scale crowdsourced
experiment [XMRD12]. Converted to HSV space, the hues
of skin tones ranges approximately within [0.0,0.1]. We then

0 1
0

T(h)0.5

sky toneskin tone

0

1

hp hp+rp
sky tone

cosine suppression function

hp‐rp

Figure 7: On the left, we show the effect of memory color
protection on T (h) (the dashed line is after protection). On
the right, we show the cosine suppression function.

Figure 8: The results after hue manipulation with and with-
out memory color protection.

add a protection to hues within this range. See Figure 7 for
illustration. Let the hue shifting function be T (h); for the
hues within [0.0,0.1], we modify the function as

T̃ (h) =
1
2

(
1− cos(

d(h,hp)π
rp

)
)
T (h) (6)

where d(h,hp) is the distance between h and the center hue
hp = 0.05 within the skin tone range, and the rp = 0.08 is the
radius of this range. We can see in Figure 7 that if h is outside
the skin tone range, T (h) is not affected at all. The closer h
gets in the skin tone range, the more T (h) is suppressed. We
apply similar protection to sky hues on the shifting function
T (h), where the protection range is defined in [0.45,0.71].
Figure 8 shows an example.

4.4.3. Unstable Hue Computation

Since hue computation is unstable and inaccurate for pix-
els in over-exposed, under-exposed, and low-saturation pix-
els, we scale down the magnitudes of hue shifting on these
pixels. Notice that this regularization method varies spatially
across the image. The under-exposed and low-saturation pix-
els have low chroma, where chroma is the product of sat-
uration and brightness values. When applying a hue shift-
ing function T to a pixel p with chroma C(p) < tC, where
tC = 0.1 is a preset threshold, we modify T by

T̃ (h) =
1
2

(
1− cos(

C(p)π
tC

)
)
T (h). (7)

Similarly, we set a threshold t` = 0.58 ‡ to scale down T on
over-exposed pixels,

T̃ (h) =
1
2

(
1− cos(

1− `(p)π
1− t`

)
)
T (h) (8)

‡ Equal to luminance 200/255 in gamma-encoded sRGB.
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Figure 9: Left: the input image. Middle: Wes Anderson style
added. Artifacts due to hue shifting in over-/under-exposed
pixels. Right: toning down the shifting for unstable hues sig-
nificantly alleviates the artifacts.

where `(p) is the luminance of gamma-decoded sRGB pix-
els. See Figure 9 for an example. We apply the same regu-
larization to the saturation shift function.

4.4.4. Transition Between Luminance Bands

We compute three different hue shifting functions separately
for highlights, midtones, and shadows. If two neighboring
pixels have the same hue, but their luminance values fall into
different bands, the transfer functions may yield very differ-
ent hues. To fix this issue, we linearly cross-fade the three
shifting functions across the two transition regions between
the three bands.

We define the boundaries of the three luminance bands
in Section 3.1. The transition region is defined with a sym-
metric margin of 40 (out of 255) in gamma-encoded sRGB
space. When cross-fading two hue shifting functions, cir-
cularity is enforced. The cross-fading between luminance
bands are also employed for the saturation shifting function,
where the margin of transition zone is instead set to 20.

4.5. Results and Validation

We demonstrate our technique for adding color styles by ap-
plying them to a variety of videos and photos. Processing
each frame takes less than 5 seconds in our experiments. Fig-
ure 10 shows the results of adding four different styles to a
number of examples; see supplemental materials for more.
The fifth, sixth, and seventh examples in Figure 10 are ap-
plied to video clips (though we show single frames in the
paper), while the others are still photos. See supplemental
materials for more photos and videos. It is important to note
that these styles have a number of characteristics that we do
not model; we only model low-level color and tone statistics.
Since content can easily overwhelm style, we test on images
that are as neutral as possible.

We evaluate the effectiveness of adding color styles by
performing a human subjects study. Each individual test asks
a user to compare a filtered image with its original, and then
asks which version better reflects a color style. The order
of image is randomized. We test two emotions (happy and

Style horror happy comedy mysterious
p∗ < 10−7 0.3912 0.3325 < 10−7

Style David Fincher Wes Anderson
p∗ < 10−7 2.4×10−5

Table 3: The t-test p∗ values of N0 against N1 across all im-
ages. The smaller p∗ is, the more effective the edited images
are in terms of representing color styles.

mysterious), two genres (horror and comedy), and two di-
rectors (David Fincher and Wes Anderson), which are iden-
tified as distinctive styles. We use Amazon Mechanical Turk
to test the emotions and genres. Since familiarity with direc-
tor style is much less universal, we use a study of our peers
who claim knowledge of the two directors to evaluate these
styles. The methodology of experiments are the same for the
MTurk study and the peer survey. Each subject is presented
with 24 pairs of actual test images (still photos and frames of
short clips, see supplemental materials); one is the original
and the other with one random style added. Three test pairs
with obvious answers are added to test the quality of the test
subjects. Users who fail one or more test pairs are removed
from analysis. We collected 178 responses from MTurk, and
removed 53 users. We collected 24 peer responses and re-
moved 6 users. We perform a one tailed t-test to test the null
hypothesis N0 (the votes for the edited and original images
are equal) against the alternative hypothesis NA (the votes for
the edited image are significantly higher). Table 3 show the
results across all images. See supplemental materials for the
t-test results on individual images. Also, we include the re-
sults of adding color styles on longer clips in the supplemen-
tal materials, which demonstrate the temporal consistence of
the color altered clips. The stability is guaranteed by the fact
that a mapping function is learned and then equally applied
throughout all frames.

We can see that our method effectively models the hor-
ror genre, mysterious emotion, and the two directors. Our
method is less successful with happy and comedy. This more
poor result is likely because these two filters are fairly subtle,
and have a fairly standard appearance that is already fairly
consistent with most neutral images. This reveals the clear
limitation of data-driven modeling of color styles that it is
more effective for strong and visually distinctive styles than
more normal ones.

5. Limitations and Future Work

Our study has a number of limitations. First, our database of
film clips is certainly not exhaustive, so our observations are
limited by dataset bias. We tried to collect a large enough
sample for the specific labels that we modeled, but we can-
not be certain that our conclusions will not change with more
samples. However, our methodology should be applicable to
larger datasets. Also, our style transfer method mostly tar-
gets shifts in overall color and tone; many successful com-
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mercial filters also employ other methods like vignetting
or image degradation. Finally, our method uses a number
of thresholds and parameters. Ideally, we would expose a
small number of them so that users can fine-tune their re-
sults and trade-off between fidelity to the original image and
the strength of the style.

As future work we would like to explore searching of on-
line video and photo databases, so that users can search for
clips with certain styles that work well together. We would
also like to model styles of other media; for example, mod-
eling styles of vector illustration would help users to build
style-consistent illustrations from clip-art components.
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Figure 10: The input images (leftmost) are altered with color styles (from left to right): horror, happy, David Fincher, and
Wes Anderson learned from feature films. See supplemental materials for more results.
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