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Abstract
Models of both the shape and material properties of physi-

cal objects are needed in many computer graphics applications.
In many design applications, even if shape is not needed, it is de-
sirable to start with the material properties of existing non-planar
objects. We consider the design of a system to capture both shape
and appearance of objects. We focus particularly on objects that
exhibit significant subsurface scattering and inter-reflection ef-
fects. We present preliminary results from a system that uses
coded light from a set of small, inexpensive projectors coupled
with commodity digital cameras.

Introduction
We consider the problem of capturing digital models of the

shape and material properties of physical objects. These mod-
els are needed in a variety of applications. A digital model with
both shape and material is needed to visualize an object in a vir-
tual scene in computer graphics. Material properties are needed
in design tasks in which a new object is to be created with a ma-
terial “look” similar to existing objects. Even if the shape is not
of interest, if the object is not flat the shape of the object must
be estimated to extract the material properties. Many methods
have been developed to scan both shape and appearance. How-
ever these methods produce errors in both the shape and material
properties when there is subsurface scattering in the material. In
this project we build on recent work in separating light paths us-
ing spatially coded patterns of light to estimate both shape and
material. Our goal is to have an inexpensive capture system that
produces models that can be rendered in a computer graphics sys-
tem with visually acceptable results.

Background and Previous Work
An image of an object is a function of the object itself, the in-

cident lighting and the properties of the imaging system, as shown
in Figure 1. Systems for capturing shape and material proper-
ties fundamentally depend on following light paths from a light
source, to the object, and then to an camera sensor. The paths de-
pend on the object shape and material scattering properties. Most
systems assume simple paths, such as the one shown in Figure 1.
Knowing the light source and camera positions, and the direc-
tion from each to a point on the object allows the calculation of
the point position using triangulation. Knowing the magnitude of
the reflected light can be used to estimate the surface reflectance
property. The accuracy of the 3D point position depends on ac-
curately locating the 2D point, shown in bright red in Figure 1, in
the camera image. Locating the point in the image however can
be difficult when the object diffuses the light into a region around
the point of incidence as a result of subsurface scattering. Rather

than a precise point on the image there is a blurred spot, as rep-
resented in pink in the figure. The appearance of the blurred spot
also indicates that the material property can not be represented by
a simple surface reflectance.

Figure 1. Shape and material capture systems depend on estimat-

ing/controlling the parameters of object illumination and the imaging device.

With the availability of inexpensive digital cameras (in par-
ticular the high resolution cameras on smart phones) and scan-
ners (such as the NextEngineTM and KinectTM there has been a
great deal of interest in assembling systems for capturing digital
content for 3D graphics applications, rather than modeling con-
tent from scratch. Early work in shape and material properties
used laser scanners, cameras and lights [1]. Recent work includes
limited acquisition (large, flat samples with statistically station-
ary textures) using just a smart phone camera [2] , simultaneous
shape and surface reflectance capture with an RGB-D sensor [3],
and sophisticated separation of light paths using an interferometer
[4]. With the exception of [4] these systems do not account for the
errors in shape introduced by subsurface scattering, and do not at-
tempt to estimate subsurface scattering properties. In our project
we seek a simple, inexpensive system that accounts for subsurface
scattering.

In previous work [5] we considered the use of spatial patterns
for estimating material properties for near-flat surfaces. We made
use of the seminal work presented by Nayar et al. [6] for separat-
ing direct and indirection illumination effects in images by using
projected spatial patterns. In addition to verifying the effects orig-
inally demonstrated in [6] we showed that indirect effects can be
further separated by using direct/indirect separations from multi-
ple illumination directions. Further we showed that while subsur-
face scattering effects are never spatially uniform, direct/indirect
separations can be used to produce spatially maps on the material
surface for where subsurface scattering is significant. Finally we
proposed that subsurface scattering parameters could be estimated



by iteratively comparing images formed with light patterns and
synthetic images of the material generated with varying scatter-
ing parameters. We seek to extend this work to arbitrarily shaped
objects. Since we use projected patterns for examining the mate-
rial properties, we wish to use projected patterns to estimate the
shape as well.

The use of light patterns for shape acquisition has been stud-
ied extensively [7], and techniques such as temporal sequences of
binary patterns have been used for decades [8]. In work following
[6], Gu et al. [9] demonstrated that direct/indirect separation us-
ing spatial patterns could improve a wide range of shape measure-
ment techniques developed in the field of computer vision. Argu-
ing that separation techniques require large numbers of images
and are vulnerable to noise, some subsequent research on shape
acquisition has focused on creating robust patterns for shape that
do not depend on explicit path separation [10, 11]. These projects
however do not consider the simultaneous recovery of material
properties, in particular subsurface scatting properties. We return
to the idea of direct/indirect separation for sequences of binary
patterns, with the goal of acquire both shape and subsurface scat-
tering properties.

System Overview
The system we use for our experiments is an upgraded ver-

sion of the setup we described in [5]. We have upgraded compo-
nents of the system used in that system based on our experience
with the captured results, and extend our processing pipeline to
the estimation of arbitrary shapes.

Hardware

Figure 2. Our hardware capture setup consists of three projector/camera

pairs.

Our hardware setup is shown in Figure 2. We built our sys-
tem out of a number of consumer components. The heart of the
system is three nodes each consisting of a projector/camera pair
controlled by a Raspberry Pi single board computer. As in our
previous system, we use AAXA KP-100-02 P2 Jr Pico projec-
tors with 1920x1080 pixels at a price of about $200 each. We use
Canon EOS Rebel T5 cameras, with 5184x3456 at a price of $300
each. While these are substantially more expensive than the Rasp-
berry Pi cameras used in [5], the increased cost is justified by the
increased resolution, ability to adjust field of view and reduced
noise level. The camera model was selected from among other

camera models based on its price and resolution, and the ability
to operate the cameras using the gPhoto library framework [12].
The cameras still have the disadvantage that they cannot take high
dynamic range (HDR) image directly, so for each image we must
take multiple exposures to form an HDR image in postprocess.
The Raspberry Pi’s used were upgraded to the current Raspberry
Pi 2-Model B-ARMv7 with 1Gb RAM, at $35 each.

The projector/camera nodes are connected to a control com-
puter (a Dell Vostro 420 series desktop computer running Win-
dows 7) using a gigabit network switch. We use a custom soft-
ware stack to project the desired patterns and take photos of them.
The system is designed with a fallback mode for when a node fails
to take a picture, allowing an operator can recover the node and
continue the scan.

Binary Patterns
The basic principle for separating luminance into direct light

Ld and indirect light Lg is to use illumination patterns of high
spatial frequency. When the fraction of a surface illuminated with
the “on” portion of the pattern is c, the radiance L received by the
camera from a directly lit spot is Ld + cLg, and from other spots
just cLg. Reversing the “on” patterns of illumination to get two
images, each location has a maximum value Ld + cLg and a min-
imum value cLg. The values of Ld and Lg can then be calculated
on a per pixel basis. Due to practical issues such as projectors not
emitting perfectly sharp patterns, and the lack of one-to-one cor-
respondence between projector and camera pixels, several shifted
pairs of inverted patterns are needed to get an estimate of direct
and indirect illumination with minimal visual artifacts.

Binary off/on patterns are also used in shape acquisition. A
classic set of binary patterns is shown in Figure 3. In this case,
three images would be captured, one for each of the patterns. A
camera observing an object lit by these codes could identify which
of the eight vertical strips in the projector image a point lies in.
For example, a pattern of unlit-lit-unlit indicates that a point was
in the third vertical strip from the right in the projector image.
A companion set of projected horizontal patterns allows the lo-
calization of a point to the extent that projected features can be
distinguished.

Normal binary codes such as those shown in Figure 3 are ill-
suited to handle objects with strong subsurface scattering. In par-
ticular, binary codes with details smaller than the scattering dis-
tance will be blurred by the scattering causing a loss of informa-
tion. In order to get a suitable three dimensional model we need
to isolate the light that is directly reflected from the light source
to the viewer. Our insight for designing a pattern to overcome this
problem is that we can combine any pattern with a pattern used
for direct/indirect separation to obtain the direct scattering of that
first pattern. For clarity, we will call the first pattern, the one for
which we seek the direct scattering, the primary pattern set, and
the combined patterns the secondary pattern set.

Our combination works as follows. We view each pattern
in the primary pattern set as a fixed illumination of the sample.
We then subdivide the “on” areas of that pattern into a number
of different regions. Two patterns are then projected. In the first,
alternate regions are illuminated. In the second, the inverse set of
regions are illuminated. Ideally, the sum of these two second or-
der patterns should be the original primary pattern. However, due
to the non-ideal nature of projectors, there will be artifacts in the



border between different regions. As such, we repeat the process
above, with new divisions of regions until the entire original pat-
tern is illuminated by at least one area that does not contain a bor-
der. For our use case, where the primary pattern is binary codes,
we use the fact that rows and columns are processed separately
to simplify our creation of second order patterns. In particular
we, create regions by evenly spacing them along the direction or-
thogonal to the binary pattern. To create overlap, we move those
regions along the direction of the binary pattern as if the stripes of
the bindery pattern were a conveyor belt carrying the regions. An
example of this is shown in Figure 4.

Figure 3. A set of binary patterns classically used in shape acquisition. The

vertical strip that a pixel is in can be identified by the pattern of lit and unlit

for that pixel in a series of 3 images.

Figure 4. A set of patterns is projected onto an object to identify unique

points for matching to images in the camera views that is suited for cases

with subsurface scattering. The primary pattern is shown at the left. The top

row of small images show the secondary patterns dividing up the lit regions

in the primary pattern. In each of the images in the top row the pattern is

shifted slightly horizontally. The lower row of images show the patterns with

the secondary patterns inverted. Note that the primary pattern is the union

of the secondary patterns and their inverses.

Processing
The images we acquire in the system must be processed to

separate direct and indirect illumination effects and to compute
the 3D locations of points on the object surface.

Separation of Direct and Indirect
The separation of direct and indirect components of primary

patterns is performed, as discussed above, by taking the minimum
and maximum of images lit with secondary patterns. For materi-
als with high levels of subsurface scattering, the indirectly illu-
minated regions are never uniformly illuminated. As a result in
the separated results there are always small but visible artifacts of
slightly higher luminance on the boundaries of the patterns used.
For creating the map of regions of subsurface scattering, we sug-
gest that these artifacts might be mitigated by applying a blur-
ring function that uses the ratio of the indirect to fully illuminated
value.

The separation does not split apart direct effects (i.e. it
doesn’t separate specular and diffuse reflection) or indirect ef-
fects (it doesn’t separate subsurface scattering and surface inter-
reflections).To separate these effects, as shown in our previous
work we can use three projector directions for each camera view,
and use the results from the three camera views for the full object.
For a single camera view, the use of different projector directions
allows the identification of specular highlights in the direct illu-
mination, which move on the surface. It also allows for the iden-
tification of surface inter-reflections in the indirect image, which
depend on the orientation of the surface relative to the light. Spec-
ular reflections of the object onto itself that appear in the images
can be eliminated using different camera views. While believe
that a more advanced analysis is possible, our current approach
simply averages colors from the different camera and projector
directions to estimate a diffuse color.

Computing 3D Locations
We compute 3D points on the object surface using the pri-

mary/secondary codes just described. Each pixel in a projector
image, which corresponds to a direction from the projector center
to the scene, is characterized by a feature vector of on/off values
that we have specified in our designed patterns. The camera pixels
that correspond to projector pixels are found by examining their
on/off values for direct illumination estimated from the sets of
secondary patterns. This identification process proceeds by loop-
ing through all of the images of the row and column binary codes.
After the identification process, the correspondences are reduced
so that there is no more than one projector pixel matched with a
camera pixel, and vice versa.

Given pixel matches between the projector and camera pix-
els, matches between different cameras and different projectors
can be found by using the transitive property. This, in turn, al-
lows for points to be uniquely identified across all cameras and
projectors.

Using this full transitive matching, the relative camera and
projector parameters and 3D point and camera locations can be
computed using bundle adjustment in Bundler SFM [14] by pass-
ing the projector information from those software packages as
“cameras”. Alternatively we could use an SDK such as OpenCV
[15] to perform this calculation. So long as the graph of cameras
and projector overlap form a single connected component, all of



the camera and projector parameters can be found in the same
coordinate system after matching each camera to each projector
pairwise.

Results and Discussion
In this section we present results for fitting scattering param-

eters to data for a flat shape, and then results for 3D shapes.

Estimating Scattering Parameters
For our experiment fitting parameters, we use a piece of faux

marble (≈ 30× 30× 10 cm) onto which a set of patterns were
projected and recorded with our original system (i.e. using the
Raspberry Pi cameras). Figure 5 shows gray scale images of the
fully illuminated sample (left), and the separations into indirect
(center) and direct diffusely reflected illumination (right).

Figure 5. A test sample of faux marble fully lit (left), and separated into

indirect and direct components

A complete scene description with the actual geometry, CCD
camera settings, etc. has been set up and rendered with Mit-
suba [16] utilizing optical properties outlined in [17]. Figure 6
shows the experimentally captured patterns compared with the re-
sults of the rendering.

In Figure 6, the top row left is the image of a pattern pro-
jected onto the sample, with the directly reflected light removed.
The center and right images in the top row show Mitsuba render-
ings of the indirect illumination with the same camera and lighting
parameters resulting when scattering parameters for skin and skim
milk are used. In the second row, Mitsuba renderings are shown
for the parameters for real marble on the left, and then with ad-
justed parameters to fit our captured results for the areas labeled
“1” and “2”. A comparison of the captured data and results for
data for skin, skim milk and real marble show that real marble
is by far the most similar. Starting with the data for real marble
then, the value of the absorption coefficient is held constant, and
the value of the scattering coefficient is adjusted to fit the two dif-
ferent regions on the sample. Plots of the results for a single row
of pixels in each region are show in the bottom row of the figure.
The final parameters estimated for the RGB image are show in
Table 1.

Table 1: Scattering parameter µs in mm−1

Material R G B
Marble 2.19 2.62 3.0
Rendering 1 2.01 2.2 2.8
Rendering 2 3.29 4.82 5.3

These results show that scattering parameters can be esti-

mated and refined using the images separated into direct and indi-
rect illumination. However, while the approach takes into account
spatial variations along the surface it assumes that the material is
homogeneous in the third dimension. We can only estimate the
scattering parameters that produce the same surface effects, not
the actual scattering coefficients of layered materials.

Computing 3D Shape
Figure 7 shows a number of examples of the various stages

of our 3D geometry pipeline to extract both properties and shape.
We take 3 exposures of each pattern, which are used to create
HDR images. Each LDR pattern takes between 20 and 30 MB of
data. The reconstructed HDR image takes between 180 and 200
MB of data. In total we used 3090 patterns for a total of 9270
captures. A full capture (accounting for failures) can take 1 to 3
days. We perform our analysis on a server with two Intel Xeon
E5-2680v3. It has a total of 24 cores and 128GB of RAM. The
calculation from raw images to points takes several hours, with a
major portion of the time taken by forming the HDR images.

In Figure 7 we show the objects under full illumination, a ex-
ample pattern along with its direct/indirect separation and finally
the resulting point-clouds. In all cases the points found still evi-
dence a good deal of noise – more than would be expected from
a laser scans. We show raw results only – standard techniques

Figure 6. A set of patterns projected onto a piece of faux marble. The top

row left shows a captured image, with two regions highlighted with different

scattering parameters. The other images are Mitsuba simulations using the

same camera and lighting setup, using published parameters for skin, skim

milk, real marble, and parameters tuned to match the highlighted regions.

The plots at the bottom show the variation of intensity in the images for a

single row of pixels.



Figure 7. A few examples of 3D geometry obtained using our system. In each example we show (from left to right) A single view of the object fully illuminated

by a single projector, the object illuminated by a single pattern, the indirect illumination of that pattern, the direct illumination of that pattern, and (below the

images) the point cloud we generate. The examples we show are (from top to bottom): A faux marble slab, an assortment of wall tiles, and a mug. Note that all

the images in this example have been tone mapped from the original HDR version. Colors for the point clouds have been taken to match the image shown. Only

points visible in that image are shown.



Figure 8. Images from a vase which demonstrates a limitations of our method. In this case our method failed to capture points on the surface where there was

a very small directly illuminated diffuse component. We are unable to locate patterns in those areas. This leads to missing points in the point cloud.

for removing outliers and denoising the point cloud data would
improve the results. The points could be used as a starting point
for a shape from photometric stereo process that uses the directly
illuminated images. They might also be useful to align the camera
positions and separated direct/indirect images with a high resolu-
tion laser scan of the object to map material properties onto the
laser scan.

We show a failure case, an onyx vase, in Figure 8. While
our approach is robust with respect to the presences of subsurface
scattering, it depends on having a detectable directly reflected dif-
fuse component. On the vase, this assumption fails in several re-
gions, which appear dark blue in the image of directly reflected
light. The small regions that are captured however would still be
useful for aligning the images used for scattering parameter esti-
mation to a model of the vase obtained by other means – such as
shape from silhouette.

Limitations
The use of consumer grade hardware does lead to some prac-

tical limitations. These products are more likely to malfunction
in mid scan then more expensive equipment. For example, the
cameras we use tend to get stuck in an inoperable state. When a
component fails, most of the time our operator is able to diagnose
the problem and complete the scan. To handle the issue with the
cameras we installed a remotely operated power source.

Controlling the system over the network means that we don’t
have a synchronized clock between different components. Thus,
a delay is needed to apply changes to the entire system. This,
coupled with the inherent capture time of our camera stack, means
that a full capture takes a number of hours.

Our system is set up to use a very large number of HDR
patterns, requiring long acquisition times and large amounts of
memory. In future work we need to greatly reduce the number
of images required, perhaps using a small number of preliminary
images to reduce the number of exposures and/or patterns.

Our method requires at least a minimal amount of direct il-
lumination in order to distinguish between different primary pat-

terns. Thus, if a section of an object is dominated by subsurface
scattering, it will be ignored by our system. Future work is needed
to test if in some cases the size of the secondary patterns might be
adjusted to minimize this issue.

Conclusions
Using projected spatial patterns to detect different light paths

is a promising area for further development of inexpensive acqui-
sition systems. The continued advance in camera and projector
quality translates directly into improved method for capturing ma-
terial properties from existing objects.
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