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Abstract
There are computer graphics applications for which the shape and reflectance of complex objects, such as faces,
cannot be obtained using specialized equipment due to cost and practical considerations. We present an image-
based technique that uses only a small number of example images, and assumes a parametric model of reflectance,
to simultaneously and reliably recover the Bidirectional Reflectance Distribution Function (BRDF) and the 3-D
shape of non-Lambertian objects. No information about the position and intensity of the light-sources or the
position of the camera is required. We successfully apply this approach to human faces, accurately recovering
their 3-D shape and BRDF. We use the recovered information to efficiently and accurately render photorealistic
images of the faces under novel illumination conditions in which the rendered image intensity closely matches
the intensity in real images. The accuracy of our technique is further demonstrated by the close resemblance of
the skin BRDF recovered using our method, to the one measured with a method presented in the literature and in
which a 3-D scanner was used.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Physically based model-
ing, I.4.8 [Image Processing and Computer Vision]: Shading, Shape.

1. Introduction

One can envision a home computer user wanting to insert
a 3-D model of his or her face into an interactive application
to be rendered under variable lighting and viewpoint. This
should ideally be done easily and cost-effectively using off-
the-shelf equipment. This would require a way to recover
the 3-D shape and reflectance without using a 3-D scanner
to estimate the shape, or a gonioreflectometer to measure its
BRDF.

Towards that end, we present an image-based technique
that uses a small number of photographs of non-convex ob-
jects, possibly captured with a home camera, to recover both
their 3-D shape and BRDF. No knowledge is assumed about
the camera position or the light sources, except that the ob-
ject in question is illuminated by a single light source placed
at a different (but still unknown) position in each photo-
graph. In other words, there is no need to perform cumber-
some photometric or geometric calibration; the photographs
could be easily captured by waving a light source in front of
the object. The speed with which the images could be cap-
tured, and the small number required, assures that the sub-
jects do not move in any appreciable way, and hence the re-
quired alignment can be easily performed.

We have developed a reconstruction technique that incor-
porates a parametric model of reflectance and uses the im-
age brightness values to recover the surface shape (along
with the surface normal field), the albedo (the ratio of in-
coming to outgoing radiance), the light source directions and
intensities, and finally the parameters of the parametric re-
flectance model. We chose to use the Torrance and Sparrow
(T-S) model26 of reflectance in our reconstruction algorithm
because it can capture the major effects of the BRDF of a
large class of surfaces, including human skin. We argue in
favor of the T-S model in more detail in Section 3. The ex-
perimental results in this paper also support its use in our
reconstruction algorithm.

Section 5 shows reconstruction results both for faces as
well as for an inanimate object. They demonstrate that our
algorithm has the potential to handle a large variety of sur-
faces with distinctly different reflectance properties. Using
our method, the estimated skin reflectance has been shown
to closely resemble the measured reflectance function re-
ported by Marschner, et al.16. In that work, they made use
of the 3-D shape which was recovered using a 3-D scanner.
Finally, in Section 6, we demonstrate the increased photo-
realism of synthetic images of human faces created using
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the reflectance properties and 3-D shape recovered with our
technique. Rendering these images was done under novel il-
lumination conditions, extrapolating from those in the input
(or training) images. The rendered image intensities closely
match those in real images.

2. Previous Work

Traditionally, the measurement or estimation of the BRDF
has been completely separated from the shape estimation
process. If the shape was needed, it was usually recovered
using a 3-D scanner, and was mostly utilized in image-
based techniques for estimating the BRDF. In fact, non-
image based methods did not use any shape information; the
sample surface was planar. In these, specialized and expen-
sive equipment known as gonioreflectometers were used to
measure the BRDF18 � 26. These devices accurately place the
camera and light source at different positions with respect
to the planar sample; each camera and light source position
provides a single measurement of the BRDF.

Since the BRDF can have three or four degrees of free-
dom, measuring even a sparse set of its values can be very
time consuming. The requirement of a flat sample, and the
meticulous geometric and photometric calibration makes
this method unsuitable for many kinds of surfaces, like the
skin of living subjects, which cannot be rolled into a plane.
Furthermore, such techniques provide only the BRDF; for
rendering images under variable lighting an viewpoint, the
shape of the surface would need to be acquired separately.

Various imaged-based methods have been developed over
the years that speed-up the process of BRDF measurement;
their common characteristic being the use of a 2-D sensor.
Most of these previous methods utilize shape variation, usu-
ally determined with a 3-D range scanner, to measure mul-
tiple samples of the BRDF simultaneously. Because of the
shape variation, and hence of the variation in surface nor-
mals, this results in a collection of different incidence and
viewing direction samples. This collection of samples usu-
ally corresponds to a 2-D range of angles (or degrees of
freedom) for the BRDF, leaving only one or two degrees
of freedom to be measured in a series of measurements (or
image acquisitions). Image-based methods that use shape in
one form or another have been developed by Marschner et
al.16, Lu et al.15, Ikeuchi and Sato11, and Sato et al.21.

Ikeuchi and Sato11 use the shape of the surface, recovered
using a 3-D range finder, and a single image to fit the param-
eters of the T-S reflectance model. Using these parameters,
they predicted the values of the BRDF beyond the range of
incident and emittance angles determined by the light source
and viewing directions in the single image. This method has
been extended by Sato et al.21 to capture spatial variations in
the BRDF using multiple images. They again fit reflectance
model parameters to the acquired data. Our method also uses
the T-S model, but unlike their methods, we do not assume
any knowledge of the shape.

In the method by Lu et al.15 the full angular range in the
incidence plane is measured without using low parametric
models. To accomplish that, they use a cylindrical sample

and multiple images with different light source positions.
This method has been extended by Marschner et al.16, where
the 3-D shape of the surface, recovered using a range finder,
is used in conjunction with multiple images, where the cam-
era moves but the light source is kept fixed, to measure the
full angular range of the BRDF extending well beyond the
incidence plane. With their method, they have been able to
measure the BRDF of human skin on living subjects.

Unlike other image-based methods, our technique simul-
taneously determines the BRDF and the 3-D shape of the
surface. The presented algorithm falls under the category of
techniques that recover shape of objects from multiple im-
ages. These techniques are collectively known as photomet-
ric stereo methods, and they are related to inverse-rendering.
When it was originally introduced in the early 1980’s28 � 23 � 10,
photometric stereo was constrained to work under the as-
sumption that the surface in question was Lambertian13 (i.e.,
purely diffuse) and that the light sources were known. The
latter assumption introduces the need of cumbersome cal-
ibration to determine the direction and intensity of light
sources, which can be difficult to do accurately in prac-
tice. Although researchers have over the years applied non-
Lambertian reflectance models to photometric stereo, they
again assumed a known reflectance map and hence knowl-
edge of the light source directions and strengths25 � 2 � 14 � 17 � 24.

Our surface reconstruction and BRDF estimation algo-
rithm is in essence an extended uncalibrated photometric
stereo technique. It is uncalibrated because it assumes no
knowledge of the reflectance map (i.e., the light sources and
the parameters of the reflectance model are unknown), and it
is extended because it does not assume that the surfaces are
purely diffuse. Because of the latter attribute, it provides an
alternative imaged-based way of estimating both the BRDF
and the 3-D shape of surfaces.

Using only image brightness values to recover the surface
shape, the albedo, the light source directions and intensi-
ties, and the BRDF is a difficult task. To make the prob-
lem tractable, we have assumed a parametric model of re-
flectance, namely the Torrance and Sparrow (T-S) model.
This is a reasonable assumption because the T-S model
of reflectance is quite expressive and can capture the re-
flectance properties of a large number of different surfaces.
Other parametric models of reflectance have recently been
developed which may be more accurate in modeling the re-
flectance of human skin, such as those by Hanrahan and
Krueger8 and Jensen et al.12, but they are more complicated
and difficult to use. The T-S model of reflectance is simpler
in comparison and the promising experimental results pre-
sented in this paper justify its use.

3. Surface Reflectance Functions

The surface BRDF is usually represented by a four pa-
rameter function. Those four parameters are the two incom-
ing light source direction angles, θi � φi, and the two viewing
direction angles, θr � φr.

The BRDF is defined as follows:

r
�
θi � φi;θr � φr ��� dLr

�
θr � φr;θi � φi �

dEi
�
θi � φi � � (1)
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where dLr
�
θr � φr;θi � φi � is the outgoing irradiance from an

infinitesimal patch on the surface, and dEi is the incident
radiance from an infinitesimal source. Due to Helmholtz
reciprocity9, r

�
θi � φi;θr � φr ��� r

�
θr � φr;θi � φi � . This means

the BRDF is the same if the light source and the camera are
interchanged.

The above representation assumes that the light is
monochromatic, and that it arrives at and bounces away
from the same point on the surface. This precludes translu-
cency and phosphorescence. Under the isotropy assump-
tion, a common simplification and not an unreasonable one,
r
�
θi � φi;θr � φr ��� r

�
θi � θr � φr 	 φi ��� r

�
θi � θr � ∆φ � .

As it can be surmised by looking around the room,
the BRDF of surfaces can be quite complicated. It can
change dramatically not only across object boundaries but
also within objects. To simplify things and to make them
more tractable in different applications, such as photomet-
ric stereo, binocular stereo, tracking, and so on, the surface
reflectance has usually been assumed to be Lambertian. Un-
der the Lambertian assumption, the appearance of an object
surface is the same as the viewing direction changes, and is
only proportional to the cosine of the angle between the lo-
cal surface normal and the light source direction. Invoking
the Helmholtz reciprocity, it can be shown that the BRDF is
constant, i.e.,

rLamb � ad (2)

where ad is the Lambertian (diffuse) “albedo”. A constant
BRDF implies a perfectly diffuse surface, and although
this is never true in reality, the Lambertian assumption can
nonetheless be a good approximation to the reflectance func-
tion of many real surfaces.

On the other extreme is the perfectly specular reflectance
exhibited by a perfect mirror. In this case, the BRDF of the
surface can be shown to be a Dirac delta function with an
infinite magnitude only when the incoming light source di-
rection is the reflection of the viewing direction about the
surface normal and within the incident plane. Like the Lam-
bertian model, this is also an approximation of real mirror
surfaces.

Over the years various non-Lambertian parametric mod-
els have been proposed for the reflectance of real-world
surfaces. These parametric models can be divided into
physically-based and empirically-based models. One issue
that has bedeviled the computer graphics community is the
complexity of these different models. The most well-known
empirical model is the Phong model20, and it has been pop-
ular because of its simplicity and fairly decent rendering re-
sults. Nevertheless, the Phong model has no physical basis
because there are important reflectance effects it cannot cap-
ture. These include the significant increase in the BRDF val-
ues and the off-specular forward scattering when the inci-
dence angle becomes large. It has been noted that many ma-
terials, including metals, oxides26, and human skin16, exhibit
these properties.

The Torrance and Sparrow model26 is a more physically-
based model which can capture those two effects. It assumes

that reflectance consists of two components. The first is as-
sociated with bulk material effects and it is assumed to lead
to a Lambertian lobe colored by the albedo at a particular
position on the surface. The other component is a specular
lobe assumed to be purely related to surface scatter.

With the T-S model, the surface is modeled as a large col-
lection of perfectly specular micro-facets whose surface nor-
mal deviation from the average surface normal is assumed to
be a zero-mean Gaussian—the higher the variance of devi-
ation the rougher the surface, and hence the duller its ap-
pearance. This surface scatter leads to a specular lobe in the
forward direction which is unaffected by the bulk material
properties. Combining these two terms gives the following
BRDF for the T-S model:

rTS � ad 
 asQF
�
θ � � η � exp

� 	 ν2θ2
a �

cosθi cosθr
� (3)

where ad is the Lambertian (diffuse) “albedo”, as is the
specular “albedo”, ν is the surface roughness (the lower its
value the higher the roughness), and θa is the angle between
the surface normal and the bisector of the (incoming) light
source direction and the (outgoing) viewing direction. Q is
the bistatic shadowing (also known as the geometric attenu-
ation) factor, F

�
θ � � η � is the Fresnel reflectivity22, where θ �

is the phase angle, the bisecting angle between the incom-
ing and outgoing directions, and η is the index of refraction.
Note that the T-S model BRDF is isotropic and satisfies the
Helmholtz reciprocity9.

Furthermore, we make two more assumptions. First, while
the Lambertian albedo ad is allowed to vary spatially, the pa-
rameters of the specular term, as and ν, are assumed to be
constant across the surface. (Note that θa in Equation 3 is
still a function of

�
x � y � because it is a function of the sur-

face normal field.) The spatial invariance of as and ν is, of
course, not entirely true in real surfaces, but it is not an un-
reasonable assumption as demonstrated by the experimental
results, while it makes the problem more tractable. Allowing
as and ν to vary across the surface is an interesting problem,
but it can be very difficult to solve reliably when one is also
estimating the 3-D shape of the surface using only image
intensities and no knowledge about the light sources. The
other assumption is that this paper does not consider color.
It is of course important, but this would require to estimate
the wavelength dependence of the Fresnel reflectivity (and
of the albedos) for different materials, which can be very
cumbersome and is beyond the scope of this paper.

The image intensity derived with the T-S model when a
single point light source s illuminates the object is given by

ITS � ad �
� s �
� cos θi 
 as ��� s �
�QF
�
θ � � η � exp

� 	 ν2θ2
a �

cosθr
� (4)

where �
� s ��� is the intensity of a point light source. Note that
we assume the light source to be very far away from the
object and hence its distance to each point on the surface is
assumed to be the same. Therefore, in the equation above,
the inverse-square distance term on the right-hand side has
been absorbed into the �
� s �
� term.

The T-S model deviates from the Phong model on two
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counts. First, there is the exponential function that comes
from the Gaussian assumption of surface roughness men-
tioned above. It should be noted that the cosine term in the
Phong model has no physical basis. It just provides a faster
way of approximating the exponential function. The second
difference derives from the existence of the 1 � cos θr and the
1 � cosθi terms in the expression for the T-S model in Equa-
tion 3.

These two cosine terms in the denominator can affect the
BRDF considerably. They lead to a significant increase in the
BRDF values along with (increasingly) off-specular maxima
as the incident angle increases (See Figure 1 for an exam-
ple.) As noted above, many materials, including metals, di-
electrics (e.g., oxides)26, and human skin16, exhibit this be-
havior, and therefore makes the T-S model a good candidate
for modeling the reflectance of these materials.

One aspect of reflectance not captured by the T-S model
is the backscatter lobe. This can be observed in metals as
well as in painted surfaces. In this case, the model by Oren
and Nayar19, which is based on the same surface roughness
model and assumptions as the T-S model, is more suitable
for modeling the backscatter lobe. Nevertheless, the Oren
and Nayar model does not capture the forward scatter, a
more common and arguably more important effect. Notably,
human skin as well as many dielectrics (e.g., oxides) do not
exhibit any significant back-scattering properties16 � 26 and the
T-S model can capture their reflectance properties quite well.

4. Surface Reconstruction and Recovery of Re-
flectance Properties

The reconstruction algorithm we present here uses only
image intensities to recover the 3-D shape and surface re-
flectance properties. As mentioned before, it is in essence
an extended uncalibrated photometric stereo technique. It
is uncalibrated because it assumes no knowledge of the re-
flectance map (i.e., the light sources and the parameters of
the reflectance model are unknown), and it is extended be-
cause it incorporates an non-Lambertian reflectance model,
namely the T-S model of reflectance shown in Equation 3.

In our current implementation, the bistatic scattering (or
geometric attenuation), Q, and the Fresnel reflectivity, F, are
ignored due to their very insignificant effect when the phase
angle is quite small (i.e., when the light source and view-
ing directions are close together25), which was the case in
the training images of the example reconstructions shown
in the next section. Note that the Fresnel reflectivity be-
comes more significant as the phase angle increases and it
was re-introduced in the image synthesis process presented
in Section 6. Note also that this implementation employs
gray-scale images, since with color images the wavelength
dependence of the Fresnel reflectivity would need to be es-
timated. Nevertheless, it has been reported in the literature
that for human skin the index of refraction, η � 1 � 37 	 1 � 527 .
In Section 6 we have assumed that η � 1 � 5.

While ad
�
x � y � , the Lambertian albedo in Equation 3, is

allowed to vary spatially, the parameters of the specular term
in the T-S model are assumed not to be a function of

�
x � y � ,

i.e., as and ν are constant over
�
x � y � . This assumption makes

the overall problem significantly more tractable and is not an
unreasonable one.

In this exposition, let the surface of the object viewed by
an orthographic camera be modeled by a height function
z
�
x � y � , where

�
x � y � denotes a Euclidean coordinate system

in the image plane of the camera. Note that the requirement
of an orthographic camera is not very stringent. The algo-
rithm still works even when the face or object is only 1-2
feet away from the camera. The general rule of thumb is that
the distance from the camera should be at least 3-4 times the
maximum range of depth of the object surface.

Furthermore, assume that the surface reflectance of the
object is given by the T-S model shown in Equation 3. For
such a surface, its surface normal field is given by

n
�
x � y ��� �

zx
�
x � y � � zy

�
x � y � � 	 1 ��

z2
x
�
x � y � 
 z2

y
�
x � y � 
 1

� (5)

where zx
�
x � y � and zy

�
x � y � are the x 	 and y 	 derivatives of

the object’s surface. Although we assume that‘ the surface
z
�
x � y � is continuous, when estimating the surface normals

continuity is not guaranteed—the estimates n � � x � y � may not
be an integrable field due to noise, i.e., the resulting field
may not correspond to a continuous surface. To enforce con-
tinuity, we expand the surface z

�
x � y � using basis surfaces

(i.e., height functions):

z
�
x � y;c

�
w ����� ∑c

�
w � φ � x � y;w � � (6)

where w � �
u � v � is a two dimensional index over which the

sum is performed, and � φ
�
x � y;w ��� is a finite set of basis

functions which are not necessarily orthogonal. We chose
the discrete cosine basis so that � c

�
w ��� is exactly the full

set of discrete cosine transform (DCT) coefficients of z
�
x � y �

(which are equal to the number of pixels in the image).
Note that the discrete cosine basis can fully describe any
continuous surface z

�
x � y � , including non-convex surfaces. If

the partial derivatives of each basis function, φx
�
x � y;w � and

φy
�
x � y;w � , are integrable (i.e., continuous), then the partial

derivatives of z
�
x � y � are guaranteed to be integrable as well;

that is, zxy
�
x � y ��� zyx

�
x � y � .

Note that the partial derivatives of z
�
x � y � can also be ex-

pressed in terms of this expansion, giving

zx
�
x � y;c

�
w ����� ∑c

�
w � φx

�
x � y;w � (7)

zy
�
x � y;c

�
w ����� ∑c

�
w � φy

�
x � y;w � � (8)

Since the φx
�
x � y;w � and φy

�
x � y;w � are integrable (contin-

uous) and the expansions of zx
�
x � y � and zy

�
x � y � share the

same coefficients c
�
w � , it is easy to see that zxy

�
x � y ���

zyx
�
x � y � . Note that the surface normals n

�
x � y � are functions

of c
�
w � and are fully determined by them.

Let the surface z
�
x � y � be illuminated by a single point

light source si, and let the camera acquire an n pixel im-
age of this surface. Let the image be denoted by the vector
I � IRn. Note that the image is written as a vector with each
pixel corresponding to an element I j of the vector I. A pixel

c
�

The Eurographics Association 2003.



Athinodoros S. Georghiades / 3-D Shape and Reflectance

I j samples the image irradiance at some point in the image
plane as specified by its Euclidean coordinates

�
x � y � . Under

the T-S model, the intensity given in Equation 4 can also be
expressed as

ITS

�
ad

�
x � y � � n � x � y;c

�
w ��� � as � ν � si �

� adnT si 
 as exp
� 	 ν2 � arccos � nT � si� �

si
� ��� v̂  !"! si� �

si
� ��� v̂

!"!$#&% 2 �
nT v̂

(9)

where v̂ is the unit-length viewing direction.

We acquire k images of the object by fixing the object’s
position relative to the camera and moving the light source to
some unknown position before each acquisition. (One could
use a video camera to quickly capture the necessary images
as the light source moves. This would minimize any move-
ments by the subject, which would significantly simplify the
necessary alignment.) Let the acquired set of images be de-
noted by the matrix X �(' I1 � ����� � Ik ) with Ii j being the value
of the j-th pixel in the i-th image. The unknown light source
directions scaled by their corresponding source intensities
are denoted by si, for all k images.

Note that the images can have shadows (both cast and at-
tached), and possibly saturations—these do not satisfy the
T-S model of reflectance and should not be used in the esti-
mation process. We therefore need to determine which pix-
els are observing either a saturation or a shadow and mark
them as being invalid. Unlike saturations, which can be sim-
ply determined, finding shadows is more involved. In our
implementation, a pixel is labeled as observing a shadow if
its intensity divided by its corresponding Lambertian albedo
is below a threshold—as an initial estimate of the albedo,
we use the average of the training images. A conservative
threshold is then chosen (for each collection of images) to
determine shadows, making it almost certain that no invalid
data is included in the estimation process, at the small ex-
pense of throwing away a few valid measurements. The only
requirement we have is that there are at least three (and
preferably more) valid measurements at each pixel position.
Any invalid data (both shadows and saturations) are treated
as missing measurements by our estimation method.

To determine the shape and reflectance properties of the
object, we solve the following minimization problem:

min
c � w  +* ad

� x * y  �* as * ν * si

O
�
c
�
w � � ad

�
x � y � � as � ν � si �

� ∑
i j

mi j � Ii j 	 ITS

�
ad

�
x � y � � n � x � y;c � � as � ν � si � � 2 (10)

where,

mi j �(, 1 Ii j valid pixel measurement,
0 otherwise �

ITS is given in Equation 9, and the Cartesian position
�
x � y �

corresponds to the j-th pixel. We solve this minimization
using steepest descent in an iterative scheme. Note that all
the parameters of ITS are unknown and minimizing over all
them at once can be formidable. We use an iterative scheme
where in each iteration the optimization parameters are up-
dated one after the other independently, i.e., optimization is

performed over one parameter, e.g. c
�
w � , while the other pa-

rameters are kept fixed, then over ad
�
x � y � , and so on.

After the initialization, we let the algorithm run for a num-
ber iterations with only the Lambertian model (where we
keep as fixed to zero). We empirically chose to run the al-
gorithm for 30 iterations after which the full T-S model is
introduced. This is to prevent the solution from falling into
a local minimum during the initial iterations and when the
surface normals, albedos, and light sources are very far from
their respective solutions. The full algorithm is given below:

1. Find the average of the training images and use it as an
initial estimate of the albedo, ad

�
x � y � . Set as � 0 and ν �

2, and let fixed for the first 30 iterations. Initialize the
DCT coefficients so that c

�
w ��� 0, - w.

2. Without doing any row or column permutations, sift out
all of the full rows (with no missing or invalid measure-
ments) of matrix X to form a full sub-matrix X̃ . The num-
ber of rows in X̃ is almost always larger than its number
of columns, k. This is because the number of rows of X is
equal to the number of pixels in an image, which can be
in the thousands.

3. Perform SVD on X̃ to find an initial estimate of matrix
S � IR3 . k which best spans the row space of X̃ . Each col-
umn of S corresponds to an initial estimate of light source
si. Note that under the Lambertian assumption and when
there are no shadows, the image formation model is linear
and could be decomposed (factorized) into its constituent
parts using SVD. Of course, in this case, because of miss-
ing elements, we can only perform SVD on the full sub-
matrix X̃ and can only get an initial estimate of S, but
not of the surface normals. Because of the required sift-
ing, this results in gaps in the normal field over the range
of

�
x � y � , which prevents us from finding an initial esti-

mate of c
�
w � using the projection technique of Frankot

and Chellapa6.
4. Update the values of c

�
w � using steepest descent, by

moving from its current estimate in the opposite direc-

tion of ∂O � c � w  / 
∂c � w  . The values of all other optimization

parameters are kept fixed during this step. The partial
derivatives with respect to each c

�
w � are determined

analytically by taking advantage of the known analyt-
ical structure of the objective function. To avoid over-
shooting during each step, each partial derivative with
respect to c

�
w � is divided by a factor proportional to�

Px
�
w � 
 Py

�
w ��� , where Px

�
w �0� ∑x * y � φx

�
x � y;w � � 2 and

Py
�
w ��� ∑x * y � φy

�
x � y;w � � 2. This step is repeated multiple

times; it is non-optimal since the objective function is not
linear w.r.t. c

�
w � . In our implementation, we repeat it 12

times for better convergence of c
�
w � before moving to

the next step.
5. Update the Lambertian albedo ad

�
x � y � while all the

other optimization parameters are kept fixed. The albedo
ad

�
x � y � is allowed to vary across the object surface, un-

like the specular albedo, as. Note that the optimization
function O

�
c
�
w � � ad

�
x � y � � as � ν � si � is linear with respect

to each albedo value ad
�
x � y � . Note also that each albedo

value ad
�
x � y � is decoupled from all the rest and hence we
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can easily solve for each independently using linear least
squares.

6. Update each of the light source directions and strengths
si. Note that the light sources are not coupled with one
another, hence they can be updated independently. Since
each vector si is only a three-vector, we use Newton’s
method (instead of Steepest descent). Note that we could
find a closed form solution of the partial derivatives1

O
�
si � and the Hessian

1 2O
�
si � , but it proved easier to

estimate them numerically.
7. Update specular albedo as and surface roughness ν if the

iteration count is more than 30. Note that the optimiza-
tion function O is linear with respect to as. Hence we can
solve for as using linear least squares. The roughness pa-
rameter ν is solved using Newton’s method. (Note that as
and ν are constant over the whole surface and hence they
are not functions of

�
x � y � .)

8. Repeat steps 4-7 until the estimates converge, as judged
by the rate of change of the objective function.

9. Perform inverse DCT on the coefficients c
�
w � to get the

surface z
�
x � y � .

Allowing the algorithm to run for a few iterations (30 in
this case) with only the Lambertian model before introduc-
ing the full T-S model, prevents the algorithm from falling
in a local minimum in almost all cases. The algorithm con-
verges within 200-2000 iterations depending on the condi-
tioning of the data. By conditioning, we mean the strength
of the specular lobe that drives the solution to find the 3-D
shape. It is well known that when there is no specular com-
ponent (i.e., under the Lambertian assumption) and when no
knowledge about the light sources is assumed, then there
is an inherent ambiguity in the recovery of the shape of
a continuous surface. This ambiguity is called the Gener-
alized Bas Relief (GBR) ambiguity and has been reported
in the literature of uncalibrated photometric stereo29 � 5 � 1 � 7.
When the Lambertian assumption is relaxed this ambiguity
is removed4 , and the stronger the component of the specu-
lar lobe the higher the conditioning and hence the faster the
convergence. In the case of the globe example reconstruction
in the next section, the algorithm converged within 200 itera-
tions, while we let the algorithm run for up to 2000 iterations
in the face examples. Nevertheless, we need to stress that the
algorithm has no outside help, such as 3-D laser scanner or
any knowledge about the light sources, and it thus tries to
solve a fairly general problem with few restrictions.

5. Results

In this section we show reconstruction results for faces as
well as for a part of a globe. The globe was made from a
material whose reflectance was expected to be well approx-
imated by the T-S model. The reflectance of the faces on
the other hand can be more complicated. The results demon-
strate that the proposed reconstruction algorithm can recover
the 3-D shape and the reflectance of objects that do not obey
the Lambertian reflectance assumption. In the case of faces,
the recovered reflectance function closely resembles the pre-
viously measured reflectance function of human skin16. With
the recovered 3-D shape and reflectance properties, synthetic
images can be more photorealistic. Examples of image syn-
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Figure 1: The surface reconstruction of part of a globe: a.
Three of the 12 input images used in the reconstructions.
b. The reconstructed surface shown along the xy 	 direction
(top) and along the y 	 direction (bottom). Units of the verti-
cal axes are in pixels. c. The BRDF of the globe at different
incidence angles, θi. The plots show the BRDF values in the
incidence plane as the viewing angle θr varies.
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thesis and comparisons with real images can be found in the
next section.

Figure 1 shows the reconstruction of part of the globe.
Twelve input single light source images (of size 400 2 400
pixels) were used (three of which are shown in Figure 1.a),
where the source directions can vary up to 24o from the opti-
cal axis. They were selected such that the light sources were
not centered around the optical axis. This helps remove any
accidental symmetry that can influence the experimental re-
sults. Note also that no attempt was made to threshold out
specularities in the input images (Fig. 1.a); only the satu-
rated pixels were removed. Enough non-saturated specular
pixels were included as valid measurements in the estima-
tion process.

The reconstructed shape, shown in Fig. 1.b, is very close
to a sphere, the expected shape. There is no perceived distor-
tion due to the presence of the specularities. The speculari-
ties have been discounted by the T-S model of reflectance.
Figure 1.c shows the recovered BRDF of the globe at differ-
ent incidence angles, θi, as the exit angle θr varies. The pa-
rameters of the T-S model recovered during the reconstruc-
tion were: ad � 0 � 0541 (the average Lambertian albedo over
the whole surface), as � 0 � 0415, and ν � 8 � 1255. (The fig-
ure shows a representative example of the estimated BRDF
where the average of the estimated Lambertian albedo over
the whole surface is used as the value of ad in Equation 3.
In reality ad is a function of

�
x � y � and hence the BRDF is

different at each position
�
x � y � on the surface.)

Observe that, as expected, the BRDF of the globe deviates
significantly from that of a diffuse surface, as demonstrated
by the pronounced specular lobe at all incidence angles. The
specular lobe becomes larger and exhibits increasing off-
specular behavior as the incidence angle becomes larger, a
key property of the T-S model of reflectance not shared by
the Phong model. This property is mostly attributed to the
1 � cosθi and the 1 � cosθr terms in the expression of the T-S
model in Equation 3, and to a lesser extend to the Fresnel re-
flectivity. Note that the Fresnel reflectivity F

�
θ � � η � in Equa-

tion 3, which was ignored during the reconstruction process
due to its insignificant effect at low phase angles, has been
re-introduced in these BRDF plots because the phase angle
can be much larger than 30o. The index of refraction, η, for
a lacquered surface was assumed to be 1.5.

Figure 2 shows the reconstruction of a human face. As
was the case with the globe reconstruction in Figure 1, the
12 training images of the face (six of which are shown in Fig-
ure 2.a) were selected so that they were not centered around
the optical axis. This helps remove any accidental symmetry
that can influence the experimental results. Figure 2.b shows
the reconstructed 3-D shape and Figure 2.c (left-side) shows
the BRDF of the face demonstrating the ability of our algo-
rithm to recover both.

Significantly, incorporating the T-S model in uncalibrated
photometric stereo can recover the non-Lambertian nature of
skin reflectance. The left of Figure 2.c shows the skin BRDF
recovered using our algorithm. Notice its similarity (up to a
global scale factor) with the previously measured BRDF of

human skin shown on the right16. In our method, and unlike
that previous technique, both the 3-D shape and the BRDF
of human skin were recovered simultaneously—there was
no need for a 3-D scanner.

The skin BRDF is close to Lambertian at small incidence
angles, but exhibits strongly increasing off-specular behav-
ior as the incidence angle becomes larger. Notice also how
the scale increases by almost 40 times from top to bottom.
This almost Lambertian behavior when the incidence angle
is small is what justified the use of the Lambertian model
by researchers in the past for reconstructing human faces
when the light sources are close to the camera. In our algo-
rithm, the deviations from the Lambertian assumption pro-
vided enough information to recover the parameters of the
T-S model of reflectance. With these, the skin reflectance
can be accurately predicted for a wide variety of incidence
and viewing angles significantly extrapolating from those in
the training images.

As noted before, the Fresnel reflectivity was ignored dur-
ing the reconstruction process due to its insignificant effect
at low phase angles (less than 30o). Nevertheless, as with the
globe, it was re-introduced in the BRDF plots (shown on the
left-side of Figure 2.c) because the phase angle can be much
larger than 30o. The index of refraction, η, was assumed to
be 1.5—the index of refraction of human skin reported in the
literature is usually 1.37-1.5 27.

Figure 3 demonstrates the ability of our method to recover
the BRDF of a face with and without sweat. For this exper-
iment, the subject’s face on the right has been rinsed with
water, artificially simulating sweat. As expected, the recov-
ered BRDF of the wet skin exhibits a noticeably more pro-
nounced specular lobe, even at low incidence angles, in con-
trast to the case on the left.

6. Image Synthesis

In this section, we use the recovered 3-D surface and re-
flectance properties of the human face shown in Figure 2
to create synthetic images of the face under novel lighting
conditions, extrapolating from those in the training images.
The image synthesis process is in essence the sum of a Lam-
bertian component and a specular component as shown in
Equation 4 and demonstrated in Figure 4. Note that the ex-
tent of the specular component over the face, created with
only one set of estimated parameters for the whole face and
shown in Figure 4, is qualitatively similar to the extent of
the specular component of a face separated using polarized
light3. This provides further support for using the T-S model
for capturing the reflectance of human skin.

To be fair, we would like to point out that assuming the
parameters of the specular lobe, as and ν, are constant over
the surface has its shortcomings. Note that the Lambertian
component of the T-S model in Figure 4 has specularities on
the nose and in the eyes. This is because the sharper than
average specularities present in the training images at those
locations could not be accounted for by the broader specular
lobe defined by a single set of specular parameters which av-
erage the specular sharpness across the whole surface. This
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Figure 2: The surface reconstruction of a face: a. Six out of the 12 images used in the reconstruction where the light source
direction can vary up to 24o from the optical axis. b. Profile view of the T-S model reconstruction. c. On the left, the estimated
BRDF of the face, recovered using our method, at different incidence angles, θi. The plots show the BRDF values in the
incidence plane as θr varies. The parameters of the T-S model recovered during the reconstruction were: ad � 0 � 0776 (the
average Lambertian albedo over the whole face), as � 0 � 0229, and ν � 2 � 2483. Note that the BRDF is close to Lambertian
(i.e., almost constant) at small incidence angles, but exhibits increasing off-specular behavior as the incidence angle becomes
larger. Observe that the scale increases by almost 40 times from the top plot to the bottom. Furthermore, the specular lobe
seems significantly removed from the perfectly specular direction, exhibiting a maximum at almost glancing θr for most of the
range of θi. Notice the similarities (up to a global scale factor) of the estimated BRDF on the left with the measured BRDF of
human skin shown on the right. (The plot on the right is courtesy of Stephen R. Marschner16 .)
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Figure 3: Reconstructions of part of a human face using the T-S model reconstruction algorithm. The face on the right is the
same as on the left, except the subject’s face has been rinsed with water, simulating sweat: a. Four out of the 12 images used in
each of the reconstruction where the light source direction was within 24o from the optical axis. Note the higher “glossiness”
in the right-side images. b. The surface reconstructions. c. The estimated BRDFs. In the case without water, on the left, the
recovered parameters of the T-S model were: ad � 0 � 0406 (the average albedo over the whole face region), as � 0 � 0087, and
ν � 2 � 8414. As in Figure 2.c, the estimated BRDF is close to Lambertian at small incidence angles, but exhibits increasing
off-specular behavior as the incidence angle becomes larger. The recovered parameters for the case with water (right) were:
ad � 0 � 0548, as � 0 � 0328, and ν � 3 � 3981. Notice how in this case the estimated BRDF exhibits a fairly large specular lobe
even at low incidence angles. It still exhibits the strong off-specular behavior as the incidence angle becomes larger.
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Figure 4: Image synthesis using the 3-D model reconstruc-
tion and the estimated BRDF shown in Figure 2. LEFT:
The Lambertian component of the T-S model (see Equa-
tions 3 and 4) ; MIDDLE: the specular component (Its ex-
tent over the face is qualitatively similar to the extent of
the specular component of a face separated using polar-
ized light3.); RIGHT: the combination of the Lambertian and
specular components for the completed synthesized single
light source image. Creating multiple light source images is
simply a superposition of single light source images.

led to some distortion in the spatially varying Lambertian
albedo ad which appears in the Lambertian component of
the T-S model in Figure 4.

Synthetic images are shown in Figure 5. In each of the
four examples, we compare the image synthesized using the
3-D surface and reflectance properties recovered using the
T-S model, to an image synthesized using a reconstruction
of the face while only Lambertian reflectance was assumed.
The images were created using an in-house rendering pro-
gram to estimate both the shading and the shadows. (Note
that the Lambertian rendering is a different image not asso-
ciated with the Lambertian component of the T-S model. In
the T-S model case the Lambertian component is added to
the specular component to form the T-S model image.) Both
of these synthetic images are then compared to a real single
light source image. To create the synthetic images, a sim-
ulated light source was moved around so that they were as
closely matched to their corresponding real image as possi-
ble. (Note that the intensities in all images are relative be-
cause of the unknown light source intensity in the real im-
ages.) As shown in Figures 5, using the recovered 3-D shape
and skin BRDF of Figure 2 leads to more accurate synthetic
images. This is also demonstrated in Figure 6 which shows
that the T-S model intensities follow the real image intensi-
ties much more closely.

7. Conclusions

In this paper, we have described an algorithm that suc-
cessfully recovers the 3-D shape and reflectance properties
of a surface using only a small number of photographs. It re-
quires no knowledge about the camera position or the light
source positions and strengths, and it also obviates the use
of a 3-D scanner.

An issue we have not handled is the possibility of allow-
ing spatial variation in the parameters of the T-S model. As
mentioned before, allowing the parameters to vary across the
surface is an important issue. Nevertheless, it can be very
difficult to reliably solve in practice because estimating the
3-D shape and reflectance parameters at every position using
only image intensities from a small number of images is gen-

erally ill-conditioned. This means that some form of regular-
ization would be required to make the problem tractable. An-
other important issue is the presence of a back-scatter lobe
in materials such as metals. The presented reflectance model
could be extended to recover the shape and the reflectance
properties of such materials.

In the case of color images—not considered here—the
wavelength dependence of the Fresnel reflectivity (as well as
of the albedos) would need to be determined. For the Fres-
nel reflectivity, this is usually performed using specialized
equipment that measure the normal reflectivity of a surface
as a function of wavelength which can then provide an esti-
mate of η as a function of wavelength, and consequently of
the Fresnel reflectivity. As mentioned before, measuring this
wavelength dependence is quite cumbersome, and, although
admittedly necessary in the case of color images, it is beyond
the scope of this paper.

Despite these issues, our method is able to reliably recover
the shape and surface reflectance properties for a variety of
non-Lambertian objects. In the case of human faces, the re-
covered BRDF was shown to closely resemble the measured
skin reflectance reported in the literature16. Our method’s
ability to recover the skin BRDF was also corroborated by
synthesizing photorealistic images of the face under novel
and fairly extreme lighting.
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Figure 6: Each plot, from a. through d., shows the intensity profiles from the three images shown in the corresponding part
of Figure 5. The profiles are along a horizontal scan-line traversing the images approximately half-way down the nose ridge.
Note how in all cases the T-S model intensity profiles more closely match the real intensity profiles. In d., where the light
originates from the lower-left direction, there appears to be very little specular component in the real image. (This was evident
from the small specular component in the synthetic image using the T-S model.) Nevertheless, the T-S profile follows closely the
intensity profile of the real image, while the Lambertian profile (using the Lambertian model reconstruction) deviates from the
real intensity both on the nose and on the left cheek. (Note that since the intensities are relative, the Lambertian profile could
have been scaled so as to coincide with the intensity of the real image around the nose region, but this would have widened
the gap around the left cheek even further.) The deviation in the Lambertian intensity is most likely attributed to the bias in the
Lambertian reconstruction that tried to account for the presence of some specular component in the training images. (Note that
on the right side of the face, the intensity profile of the real image deviates from that in the synthetic images because of the
existence of ambient lighting, which we have not included in the synthetic images.)
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