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Abstract

Texture synthesis techniques require nearly uniform texture samples, however identifying suitable texture samples
in an image requires significant data preprocessing. To eliminate this work, we introduce a fully automatic pipeline
to detect dominant texture samples based on a manifold generated using thediffusion distance. We define the
characteristics of dominant texture and three different types of outliers that allow us to efficiently identify dominant
texture in feature space. We demonstrate how this method enables the analysis/synthesis of a wide range of natural
textures. We compare textures synthesized from a sample image, with and without dominant texture detection. We
also compare our approach to that of using a texture segmentation technique alone, and to using Euclidean, rather
than diffusion, distances between texture features.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Computing
Methodologies—Three-dimensional graphics and realism Color, shading, shadowing, and texture

1. Introduction

Texture describes appearance that looks homogeneous at
large scales but random at small scales and has the com-
monly accepted characteristics oflocality, repetition, and
randomness. Texture has found widespread use in realistic
appearance modeling and synthesis in computer graphics
[DRS08]. However, not all images are suitable as a source
for texture samples: some input images have extraneous ele-
ments that are not a part of target textures or that have very
distracting features; some input images have variations that
depend on the environment or that are designed by a user.
A uniform texture is desired especially when texturing 3D
objects. Spatial variations in the object texture should be un-
der the designer’s control (e.g. spelling out the word “I3D”
with flowers in the grass in Fig. 10 of [Ash01]), or should
be computed to be consistent with variations in shading and
shadowing, when the object is illuminated. All these issues
can be summarized into one key problem:given a source im-
age, how can we identify patches that are suitable as texture
samples?

In previous work, users were required to carefully pre-
pare the texture sample image. This can be a tedious trial-
and-error process, and requires insight into the texture syn-
thesis process to identify an appropriate texture sample size
[KW07], as well as to eliminate areas not suitable for use.

To address this problem, we extract thedominant texture,
a large group of homogeneous texture elements, from the
input image. We use pixels grouped in small patches as tex-
ture elements (referred to as “texels” hereafter) and study
their distribution in feature space based on a simple obser-
vation: variations within dominant texels are much smaller
than those between a dominant texel and an outlier; in other
words, elements of dominant texture are relatively much
closer to each other. When a single texture image contains
myriad observations of such texture elements, we can de-
tect dominant texture by a data-driven approach without any
prior knowledge. Moreover, we note that dominant texture
elements are easily identified by humans despite their com-
plicated patterns. We conjecture that such texel points of in-
terest lie on a low-dimensional manifold within the original
high-dimensional space, similar to many other perception-
related applications. Therefore, we suggest the diffusion dis-
tance, a non-linear approach in manifold construction, to
better detect such geometric structure.

In this paper, we propose a pipeline that automatically
determines texture patch size and the collection of texture
patches for any given source image. Referring to Figure1,
starting from a texture image, we construct a binary mask
of dominant texture using manifold analysis based on diffu-
sion distance. Comparing texture synthesis results with and
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(a) source image (b) dominant texture mask(c) synthesis with full image(d) synthesis with dominant texture

Figure 1: Given a texture image(a), we construct a binary image that masks dominant texture based on manifold density
and diffusion distance to the kernel texel(b). Compared to texture synthesis with full source image in(c), synthesis only with
dominant texture in(d) gives us more homogeneous appearance and less distraction.

without such a mask side-by-side, we can see that domi-
nant texture masks greatly improve the synthesis quality. Our
method eliminates the need for client-side parameter tweak-
ing and input image editing, both of which are essential in
order for most current techniques to achieve the desired re-
sults. We make the following key contributions:

• apply diffusion distance manifolds to natural texture anal-
ysis and propose practical implementations to enable their
full potential;

• detect texture patch sizes and extract the collection
of texture patches used for conventional texture analy-
sis/synthesis approaches;

• present a pipeline that is fully automatic and robust for a
wide range of natural texture images that previous work
has failed to address.

The rest of this paper is organized as follows: first,
we review related work in texture analysis/synthesis and
manifold-based analysis in Section2; next, we detail our
manifold construction with diffusion distance in Section3,
and formally define the dominant texture extraction prob-
lem in Section4; then, we detail our pipeline in Section5,
introduce a practical implementation in Section6; then, we
demonstrate and compare experimental results using wide
range of natural texture samples with other methods in Sec-
tion 7; finally, we conclude with a summary and future work
in Section8.

2. Related Work

Our work is related to previous research in texture analy-
sis/synthesis and manifold-based data analysis.

2.1. Texture Analysis and Synthesis

Considerable work has been devoted to texture-related re-
search, including texture classification, which retrieves sim-
ilar samples in the training set given any texture image, tex-
ture segmentation, which identifies differently textured areas
in one image, and example-based texture synthesis, which

generates a large patch of texture similar to a small input
sample. Much of this work adopted parametric texture mod-
els and considered either global or local similarity for texture
clustering [HB95, Bon97, LM01, FB03]. These approaches
rely on predefined texture features, about which we have
limited knowledge, and can only be applied to certain types
of textures. Later, non-parametric methods were proposed
for texture synthesis: a partially synthesized neighborhood
is compared to given examples based on the Markov Ran-
dom Field (MRF) assumption, and the best match is used
as new synthesis pixel [EL99]. Combined with subsequent
improvements, such methods have proven well suited for ef-
ficient and high-quality texture synthesis (see [KW07] for a
comprehensive overview). However, these methods do not
validate MRF properties of the input samples before synthe-
sis, and thus fail on images with complicated natural patterns
without careful preparation.

Our system combines the advantages of parametric and
non-parametric methods by inserting dominant texture ex-
traction before MRF-based synthesis. Unlike previous para-
metric texture models, we use raw color pixel values of tex-
ture patches as our texture feature, and construct diffusion-
distance-based manifolds to better examine texture homo-
geneity, which has proven to work well for a wide range of
natural textures withouta priori knowledge. Detected domi-
nant textures are fed to conventional non-parametric synthe-
sis methods, such asImage Quilting[EF01], which we apply
in this paper. Dominant textures can also be used by other
texture analysis frameworks, such asNear-Regular Textures
analysis [LLH04]. We show that dominant texture detection
improves texture synthesis quality in 2D and on 3D objects.

Previous work also used masks to avoid mixing unrelated
textures. For example, Hertzmann et al. [HJO∗01] proposed
“texture-by-numbers” to synthesize new images based on
manually assigned labels; Zalesny et al. [ZFCG05] auto-
matically segmented the input image into homogeneous re-
gions with traditional gray-level co-occurrence methods be-
fore synthesis. In our work we automatically generate a dom-
inant texture mask using raw texture patch pixel values on a
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manifold based on diffusion distance. Other work has de-
veloped specific models to account for or to correct certain
types of texture variations. For example, Liu et al. [LLH04]
modeled geometric variations due to non-planar surfaces or
perspective viewing; Xue et al. [XWT∗08] modeled shading
variations as the product of reflectance and illuminance. Our
work does not rely on any prior knowledge.

2.2. Manifold-based Analysis

Manifold-based analysis considers only short-distance rela-
tionships between data points and reconstructs the global
structure by “stitching” such small pieces. Manifold mod-
els are considered more suitable for perception-related ap-
plications, where observations commonly lie only on a low-
dimensional manifold in the original high-dimensional fea-
ture space [SL00]. Related approaches have been revived in
the past few years, including isometric mapping (Isomap)
[TdSL00], locally linear embedding (LLE) [RS00], diffu-
sion maps based on diffusion distance [Laf04], and others.
These methods have been applied widely in graphics, such as
in charting in BRDF modeling [MPBM03], simplicial com-
plexes for texture modeling [MZD05], Isomap and LLE in
appearance-space texture synthesis [LH06], and an Isomap-
like approach in estimating weathering degree maps from a
single image [WTL∗06]. In our previous work [LGG∗07],
we applied diffusion maps to analyze correlation between
appearance patches and environmental contexts on a weath-
ered surface. In this work we extend the application of dif-
fusion maps to the identification of similar textures.

Coifman et al. showed the diffusion-maps-based methods
to be more reliable for recovering the smooth data structure
and more robust to data noise [CLL∗05,LKC06]. In this pa-
per, we demonstrate their advantage in texture element mod-
eling by showing an actual distribution of our data points,
and by comparing our dominant texture detection results
with Euclidean-distance-based analysis. This general idea is
similar to the appearance manifold described in [WTL∗06],
however the authors did not consider outliers in input sam-
ples. In subsequent work by Xue et al., they dealt primarily
with shading variations [XWT∗08]. In our approach, we ap-
ply diffusion distance instead of geodesic distance for man-
ifold construction, use image patches as elements to better
characterize textures, and propose a fully automatic pipeline.
Pavan and Pelillo studied dominant sets in a graph using
pairwise clustering and introduced a similar algorithm to
ours [PP07]. However, their approach has a different mathe-
matical starting point. In addition, we provide intuitive rea-
soning, a practical implementation, including key parameter
selection, and demonstrate results on a wide range of input
images.

3. Manifold Construction based on Diffusion Distance

To quantify how close two texels are in feature space, we
need a dissimilarity measurement. Euclidean distance, while

Figure 2: Comparison between Euclidean and diffusion dis-
tances: point B and point C are equally distant from point
A in terms of Euclidean distance (highlighted in solid green
lines). Heat starting from point A reaches point B faster be-
cause of more paths connecting them (highlighted in dashed
blue lines); hence, in terms of the diffusion distance, point B
is considered “closer” to point A compared to point C.

X ⊂ R
D source patches, with cardinalityN

M ⊂ R
d embedded manifold

X′ ⊂ X subsampled patches, with cardinalityN′ � N

M
′ ⊂ R

d′

subsampled manifold fromX′

‖xi −x j‖ Euclidean distance
ε Gaussian kernel size

δ(xi ,x j ) diffusion distance∗

wi, j kernel function∗

W kernel matrix∗

µ(xi) manifold density∗

A normalized heat diffusion matrix
hk(xi) dominant heat distribution fromxk

Table 1: Summary of notation (∗ A superscript of(ε) is used
when the Gaussian kernel size is explicitly specified).

simple, fails to recover the geometric structure of low-
dimensional manifolds embedded in high-dimensional fea-
ture space, where perception-related data usually lie [SL00].

Instead, we use diffusion distance, a non-linear distance
measurement, which computes the distance between two
points by simulating heat diffusion and recording the time
of traversal based on random diffusion. Figure2 compares
Euclidean distance and diffusion distance measurements on
a “dumbbell-shaped” data set. The diffusion distance con-
siders the width of the region connecting two points, in a
sense the number of paths connecting the two points. The
diffusion distance is demonstrated to better preserve struc-
ture smoothness and is more robust to both outliers and small
disturbances within the graph structure [CLL∗05].

A formal definition of the diffusion distance is as follows
(see Table1 for a summary of math notation): given data set
X ⊂ R

D with N points, we define itsN×N kernel matrix
W(ε) with entries of pairwise heat conduction function (or,
kernel function) values as

w(ε)
i, j = e−‖xi−x j‖

2/2ε, (1)
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where‖xi − x j‖ = (∑l (xi,l − x j,l )
2)1/2 is the Euclidean dis-

tance betweenxi and x j , and ε is some Gaussian kernel
width. Whenxi andx j are far away from each other, their
heat conduction rate decreases quickly to zero, which means
heat can only diffuse between two near points. Then we nor-
malize the kernel matrix to factor out sampling density and
apply singular vector decomposition (SVD) to project origi-
nal dataxi to a pointyi in a new feature spaceRN, where the
Euclidean distance of‖yi − y j‖ approximates the diffusion

distanceδ(ε)(xi ,x j ) in the original feature space [LKC06].

Selecting an appropriate Gaussian kernel sizeε is criti-
cal to reveal geometric structure using the diffusion distance.
Coifman et al. proposed an automatic way to selectε: when
we sum up both sides of Equation1 with respect to alli’s and
j ’s, then approximate the right side with its mean value in-
tegral and with the integral in the manifold’s tangent space,
we have

log

(

∑
i

∑
j

w(ε)
i j

)

≈
d
2

logε+

(

N2(2π)d/2

vol(M )

)

, (2)

whered is the dimension of the manifold,N is the number of
total observations on the manifold, and vol(M ) is the vol-
ume of the manifold (see [CSSS08] for details). Sinceε from

the linearity region of the curve between log(∑i ∑ j w(ε)
i, j )

and log(ε) introduces the least error among approximations,
suchε best reveals the manifold structure based on diffu-
sion distances (see Figure3 for an example). This guideline
makes selectingε more efficient since we do not rely on prior
knowledge of our data set or brute-force trials. Moreover, we
estimate the manifold dimensiond based on the slope of that
linearity region.
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Figure 3: Gaussian kernel size selection from the linearity

region on a curve betweenlog(∑i ∑ j w(ε)
i, j ) and log(ε). See

Figure1(a) for input texture image.

Explicit construction of the manifold requires expensive
computation, including SVD on a large kernel matrix. If we
are only interested in diffusion distances among certain data
points, the diffusion framework provides an alternative mea-
sure by a Markov random walk [CLL∗05]: Suppose one unit
of heat starts diffusing from data pointxk at time 0. In or-
der to represent the heat distribution, we use a vectorχk of
lengthN whose element is 1 only at thek-th component and
0 everywhere else. After timeτ, the heat distribution at point
xi is defined as

hk(xi) =
(

Aτχk
)

i , (3)

whereA’s entries are defined asai, j = wi, j/∑ j wi, j to nor-
malize the outgoing degrees for heat transition, and(·)i is
the i-th component of a vector. This value measures the heat
accumulation at pointxi coming fromxk through all pos-
sible connections and thus qualitatively approximates the
diffusion distanceδ(xi ,xk): the higher the value ofhk(xi),
the closer these two points are. Forτ selection, we use
dN(1/d), which is large enough to propagate heat to neigh-
boring points but not to reach the heat equilibrium (where
all texels hold the same amount of heat). In this paper, we
use this measure to simplify our diffusion distance estima-
tion without explicitly computing the manifold.

4. Dominant Texture and the Texel Manifold

To build up texels for manifold construction, we first apply
the 2D Fourier transform to the image and detect periodicity
along every 45 degrees in frequency domain. The strongest
periodicity response is used to estimate the texture patch
size. This scheme is particularly important for regularly
structured patterns. Unlike some previous work, we split the
source image intooverlappingpatches with step size 1 along
each direction, providing dense samples that are critical for
non-linear manifold reconstruction, and partly compensat-
ing for possible inaccuracy in patch size estimation usu-
ally found in images of natural textures. Such patches are
then expanded into high-dimensional feature vectors with
all pixel values. We construct a graph using texel vectors
as nodes and kernel function values as weights over edges
between each pair of texels.

Explicit computation of diffusion distances between
dense samples is impracticable in our pipeline. Instead, we
use two attributes of texels on the manifold to identify texels
of interest:

Density µ(xi): measures local compactness of a texelxi on
the manifold and can be estimated using the sum of weights
over all edges connectingxi

µ(ε)(xi) = ∑
j

w(ε)
i, j . (4)

Dominant heat distribution hk(xi): as defined in Equa-
tion 3, approximates the diffusion distanceδ(xi ,xk). When
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(a) Abstract graph showing texels in feature space. (b) Abstract illustration of texel classification.

(c) Texels in feature space from real data. (d) Texel classification based on real data.

Figure 4: Texel classification:(a) and(b) show abstracted graphs of the texel distribution in feature space and classification in
a space spanned by density and dominant heat distribution;(c) and(d) show corresponding graphs from real data (See Figure1
for the source image). To visualize texels in high-dimensional space in(c), we project them onto a subspace spanned by the first
three principal components using PCA; the color bar on the right shows the data density: red for high densities, blue for low
densities; seehttp://graphics.cs.yale.edu/DominantTexture/ for animated 3-D view. We can see a large dense group
on the right (corresponding to the brick wall, later classified as Type 0), asmall dense group on the left (corresponding to part
of the pipe, later classified as Type I), a few points connecting these two groups with medium densities (later classified as Type
II), and many sparse points with low densities scattered around (later classified as Type III).

xk is selected from the dominant texture set, this value also
implies how probable it is thatxi belongs to the same set.

Based on these two attributes, we classify texels into four
different types, as follows (see Figure4):

• Texel Type 0 (Dominant Texels): texels that form the
dominant texture. These texels have high densities with
support from near neighbors, cover the main region in the
image, and have high dominant heat distributions;

• Texel Type I (Small-Group Outliers): texels that form
some other texture groups covering relatively small re-
gions in the image. These texels might still have high
densities if their internal variations are sufficiently small.
However, their dominant heat distributions would be sig-
nificantly lower than those of texel type 0;

• Texel Type II (Bridging Outliers) : texels connecting
Type 0 and Type I groups. Such “texel bridges” are usually
very narrow compared to the size of other texel groups,
hence densities are low. On the other hand, they are closer

to the main texel group and have higher dominant heat
distributions compared to texel type I;

• Texel Type III (Scattered Outliers): noise scattered
throughout the feature space, far from other texels. These
have low densities and dominant heat distribution.

Although only dominant texels (Type 0) are explicitly de-
tected and used in our pipeline, texel classification as out-
lined above provides a complete picture of texel characteris-
tics from natural texture images for further study.

5. Pipeline

With the diffusion distance manifold we built in Section4,
we propose the following pipeline for dominant texture de-
tection, with the data flow shown in Figure5.

Step 1: Texture granularity detection: Given a source im-
ageI , we apply the 2-D Fourier transform and estimate the
proper patch sizenp in frequency domain.

c© 2008 The Author(s)
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granularity detection texels in feature space
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Figure 5: Flow chart of dominant texture detection.

Step 2: Texel vectors preparation: We split I into N
overlapping patches of sizenp × np centered around each
pixel, then expand such patches intoD-dimensional vectors
{xi} ⊂ R

D, whereD = 3n2
p for a color texture image.

Step 3: Kernel matrices computation: We estimate pair-

wise kernel function valuesw(ε)
i, j between texels using a se-

ries of predefinedε candidates (see Equation1), then con-

struct a series of kernel matricesW(ε)
N×N.

Step 4: Kernel size selection: We plot a curve between

log(∑i ∑ j w(ε)
i, j ) and log(ε), then selectε around the linear-

ity region and estimate the manifold dimensiond based on
the slope of that linearity region.

Step 5: Texel density estimation: We estimate the density
µ(xi) for each texel based on the kernel sizeε (see Equa-
tion 4).

Step 6: Dominant Texels Detection: We first selectxk with
the highest density as our “seed” texel, then scatter all texels
in a 2-D plane spanned by their densitiesµ(xi) and domi-
nant heat distribution valueshk(xi) with respect toxk (see
Figure4(d)). If texels with high densities and high dominant
heat distribution values (those in the top right quadrant) con-
sist of more than 40% of all texels, they are considered as
dominant texels (Type 0). Otherwise, they are considered as
small-group outliers (Type I), and are removed along with
texels with high heat distribution values but low densities
(those in the top left quadrant, as bridging texels, Type II).
We will re-run this step with all remaining texels until we
detect the dominant texel group.

In this step, thresholds for density and dominant heat dif-
fusion are estimated automatically (see the vertical and hori-
zontal red lines in Figure4(d)): we order density values from
low to high, then select the valley between the first and sec-

ond peaks on the smoothed histogram as density threshold;
if no second peak is detected, we use the value of the 0.2-
quantile point instead. For the heat value threshold, we build
the smooth histogram in a similar way, then select the first
valley beyond the 0.4-quantile point as the threshold, mak-
ing sure the size of main texel group is at least 40% of the
image; if no such valley is found, we simply consider all re-
maining texels as scattered outliers (Type 0).

Step 7: Dominant texture mask: If no dominant texels are
detected, we will reject the source image. Otherwise, we cre-
ate a binary dominant texture maskImask by first placing
1’s at the centers of dominant texels on the source image
and 0’s elsewhere, then applying a convolution of this bi-
nary image with anp×np square block of 1’s.Imaskmasks
“good pixels” that compose the dominant texture and is used
along with source imageI in conventional texture synthesis
schemes.

6. Practical Implementation

Similar to other data-driven approaches, we need a large
amount of data to construct a reliable estimate about the data
distribution without prior knowledge. However, direct appli-
cation of the pipeline above is still limited by computational
resources. We use several techniques to make our pipeline
practical in terms of space and time complexity.

6.1. Linear Dimensionality Reduction

We notice from Equation1 that diffusion distances depend
only on the estimation of Euclidean distances, which can
be well approximated with linear dimensionality reduction.
We first apply principal component analysis (PCA) on our
source texel set to reduce its dimension toD′ � D, where

c© 2008 The Author(s)
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99.9% of the energy is still preserved. Thus, diffusion dis-
tances in Equation1 can be estimated in a significantly
lower-dimensional space without losing much accuracy.

6.2. Data Subsampling

Suppose our original data setX with N points is over-
sampled from ad-dimensional manifoldM , and a subset
X′ ⊂ X with N′ points (N′ � N) is still sufficient to cover
M . We have the following equation for the Gaussian kernel
sizesε for the original data set andε′ for the simplified data
set,

N′/N =
(

ε/ε′
)d

. (5)

If we approximated by d′ based onX′ (see Equation2), then
we have an approximation ofε for M

εapprox= ε′
(

N′/N
)1/d′

. (6)

In our pipeline, we randomly select a small subsetX′ ⊂ X
with cardinal numberN′ � N, estimateε′ and d′ based
on Equation2, then estimate the manifold density ofX
based on diffusion distances with respect to the subsetX′

based onεapprox in Equation6. Similar ideas can be found
in [dST04], where landmark points are used to accelerate
multi-dimensional scaling. A small subsetX′ can greatly ac-
celerate the computation but tends to over-simplifyM ; thus,
d cannot be well approximated byd′, and we have only a
poor estimation ofε for M . For our test data, an empirical
numberN′ ∼ N0.7 balances accuracy and acceleration very
well; we only need to estimateN×N′ pairs of diffusion dis-
tances instead ofN2 pairs.

6.3. Graph Sparsification

During heat diffusion simulation, we need to maintain a ma-
trix A of sizeN×N (see Equation3), which is too large for
memory. In fact, a texel will only have a few neighbors with
non-negligible connection in terms of the kernel function
defined in Equation1. Therefore, we consider onlyk near-
est neighbors (k � N) for each texel based on approximate
nearest neighbor searching (ANN) [AMN∗98], resulting in a
sparse diffusion matrixA with k×N non-zero entries. After
graph sparsification, the right hand side of Equation3 can be
rewritten as(A· · ·(A(Aχk)))i and computed efficiently as a
series of multiplications between a sparse matrix and a vec-
tor. In our implementation, a conservativek = log2 N bal-
ances efficiency and accuracy very well.

7. Results

We built our pipeline on a Windows platform with a
2.80GHz CPU and 2GB memory. We implemented steps
2 and 3 in C++ because these steps involve large amounts

of simple data processing and we were concerned with ef-
ficiency. We implemented other steps in Matlab for bet-
ter module flexibility and result visualization. For a general
color image of size 125×94 and patch size 11, it takes ap-
proximately 3 minutes for image patch preprocessing, 15
minutes for kernel matrix computation, and less than 10 sec-
onds on dominant texture detection based on density and
dominant heat distribution.

7.1. Dominant Texture Detection Results

We apply our pipeline to a wide range of natural textures
that contain different extraneous elements, including artifi-
cial objects, deterioration patterns like scratches and cracks,
flow patterns, shadows, rust, dirt, biological growth, and oth-
ers (see Figure6) . All these examples are taken from nat-
ural scenes with rich texture information, but are difficult
to use as texture samples without some preprocessing. Our
pipeline detects dominant textures in most of these cases
without prior knowledge.

7.2. Comparison of Texture Synthesis with and without
Dominant Texture Detection

We generate binary masks for dominant textures based on
the detection results in Section7.1, then synthesize large 2-D
texture patches from these input images usingImage Quilt-
ing [EF01]. We compare synthesis results with and without
such a mask side-by-side in the first two columns in Figure6.
Our masks remove outliers while still preserving rich varia-
tions of the dominant texture. In other words, our pipeline
automatically builds up a “clean” texture sample image for
synthesis purposes, a step which is missing in all previous
non-parametric synthesis approaches.

One might argue that those outliers sometimes enrich tex-
ture variations and can be viewed as part of the texture pat-
tern. However, there are two important reasons that necessi-
tate dominant texture detection: first, structured elements in
the input image (such as pipes and windows in the first two
examples in Figure6) do not follow MRF-assumption and
cannot be repeated randomly; second, global texture varia-
tions are highly correlated to the environment and cannot be
synthesized with local neighborhoods. Simple repetition of
such patterns is very distracting (see the last two examples
in Figure6). Our approach can be viewed as a form of pre-
processing for other synthesis approaches oriented toward
global variations [WTL∗06, LGG∗07], where global varia-
tions over uniform textures under user control are possible.

To validate the second point, we synthesize textures from
2-D images onto 3-D surfaces by first splitting and flattening
3-D meshes into 2-D patches then synthesizing on the tex-
ture atlas. We compare synthesis results with and without the
dominant texture mask in Figure7. When using full source
images, we cannot guarantee consistency between appear-
ance and geometry, or object shadow directions with scene
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(a) source image (b) diffusion distances (c) inverse Euclidean distances (d) nCut

Figure 6: We compare dominant texture detection and corresponding texture synthesis results of four image samples. From left
to right are synthesis with(a) full source image,(b) dominant texture based on diffusion distances,(c) dominant texture based
on inverse Euclidean distances (see Section7.3), and(d) the largest texture segment fromnCut(see Section7.4).

c© 2008 The Author(s)
Journal compilationc© 2008 The Eurographics Association and Blackwell PublishingLtd.



J. Lu, J. Dorsey, H. Rushmeier / Dominant Texture and Diffusion Distance Manifolds

Figure 7: Texture synthesis on 3D objects. From top to bottom: source texture image and dominant texture mask, synthesis with
full source texture image (note the inconsistency between texture and geometry, and between shadows from the texture map and
those from scene relighting), and synthesis with only dominant texture.

illumination. Realistic renderings can only be achieved by
post-processing scenes with “clean” textures as shown at the
bottom of Figure7.

7.3. Comparison with Euclidean-Distance-based
Methods

To examine the value of using diffusion distances, we re-
place the kernel function in Equation1 with the inverse of
Euclidean distance, as follows

wi, j =
1

‖xi −x j‖
. (7)

We compare both detection results side-by-side in the sec-
ond and the third columns in Figure6. In most cases, diffu-
sion distance manifolds provide more accurate detection re-
sults with more good texel candidates for texture synthesis.

7.4. Comparison with Texture Segmentation

To examine the value of building the texel manifold, we also
compare our dominant texture detection results with image
segmentation results fromMultiscale Normalized Cuts Seg-
mentation[CBS05] with two segments in the rightmost col-
umn in Figure6. We note that unlike our approach,nCut is

not completely automatic: the user must specify the number
of texture segments. In general, their results tend to preserve
large areas of uniform texture, usually missing small iso-
lated outliers or further splitting uniform areas into smaller
patches. Again, our pipeline gives us more accurate detec-
tion results.

7.5. Failure Cases

Our pipeline gives poor results for two types of cases (see
Figure8). Diffusion distance manifolds tend to connect texel
groups with smooth and broad transitions and therefore can-
not correctly respond to such images; our pipeline also fails
for complicated crack patterns that have rich variations in
scale, orientation, and gap sizes. To our knowledge, such
patterns have not yet been well addressed by any data-driven
approach.

8. Conclusion and Future Work

In this paper, we address the problem of dominant texture
detection in texture modeling and synthesis. We construct
a graph with texture elements and a kernel function, then
propose an automatic pipeline to detect the dominant tex-
ture using diffusion distance with acceleration techniques.
Experimental results show that our system covers a wide
range of natural texture samples without domain knowledge.
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Figure 8: Failure samples with dominant texture masks em-
bedded: image with smooth transition between solid and
spotted paint textures; cracks of different orientation and
gap sizes.

All source data and additional examples can be found at
http://graphics.cs.yale.edu/DominantTexture/. In
future work, we will study the explicit shapes of texture man-
ifolds, and apply state-of-the-art numerical methods to ac-
commodate even larger data sets to cover more complicated
and generalized texture samples.
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