
ATHENA: Automatic Text Height ExtractioN for the
Analysis of old handwritten manuscripts

Ruggero Pintus
Yale University

ruggero.pintus@yale.edu

Ying Yang
Yale University

ying.yang.yy368@yale.edu

Holly Rushmeier
Yale University

holly.rushmeier@yale.edu

Abstract—A massive digital acquisition of huge sets of dete-
riorating historical documents is mandatory due to their value
and delicacy. The study and the browsing of such digital libraries
is becoming crucial for scholars in the Cultural Heritage field,
but it requires automatic tools for analyzing and indexing those
dataset items. We present here a layout analysis method to
perform automatic text height estimation, without the need of
any kind of manual intervention and user defined parameters.
It proves to be a robust technique in the case of very noisy
and damaged handwritten manuscripts. The effectiveness of the
method is demonstrated on a huge heterogeneous corpus of
medieval manuscripts, with different writing styles, and affected
by other uncontrollable factors, such as ink bleed-through,
background noise, and overtyping text lines.

I. INTRODUCTION

Nowadays, manuscripts are being digitized at an increasing
rate. In the Cultural Heritage field this activity becomes much
more important, since a huge number of historical documents
are deteriorating day by day, and their digital preservation is
compulsory due to their value and delicacy. Moreover, a digital
collection of such documents represents an invaluable database
that woudn’t otherwise be available to the public, whether
they are experts, tourists or people keen on art. The amount
and importance of the information contained in this variety of
different language manuscripts results in an increased interest
in developing tools to explore, browse and enjoy them in
a more comprehensive manner. Digital libraries all over the
world have yet to be exploited electronically for consulting,
exchange and distant access purposes. However, to produce a
fast, electronic, searchable form for a document, it must first be
indexed. Some recent works [1], [2] show the utility of hyper-
links to browse digital collections. It stands to reason that both
the massive digitization and indexing of thousands of pages
require completely automatic tools. Thus the document layout
analysis field plays a significant role, being a fundamental step
of any document image understanding system.

Although efficient algorithms exist that cope with printed
documents, analyzing old handwritten manuscripts poses some
more difficult challenges. Those documents are affected by
problems of ageing and have looser layout formatting require-
ments. Further, their physical structure, containing text, capital
letters, portraits, ornamental bands and graphical contents, is
even harder to extract due to other uncountable uncontrollable
factors, such as holes, spots, writing from the verso appearing
on the recto (ink bleed-through), ornamentations, background
noise, touching text lines, different writing styles, and so forth.
It follows that the segmentation of historical handwritten doc-
uments is still an open research field, and, to our knowledge,

a completely automatic solution has not been presented yet. A
common problem is the initial estimation of the text height.
While there are some good automatic techniques that find
this value for printed documents with clear inter-line spacing,
this task grows more difficult as inter-lines become narrower
(e.g., in medieval manuscripts). Due to the ease of manually
performing this task, some techniques [3], [4], [5] ask the
user to input a rough estimation of the text height. However,
user intervention becomes infeasible in the case of massive
datasets with a high number of different documents and high
variability of text size.

We present here a parameter-free, automatic method to per-
form text height estimation. Given the image of a manuscript
page, a multi-scale representation is first produced. Then,
for each sub-image at each level, a robust, frequency-based
descriptor is computed. Finally, a voting procedure finds the
predominant spatial frequency in the document page, whose
period is the value of the text height. It proves to be an
efficient and reliable technique in the case of very noisy and
damaged old handwritten manuscripts. Here we list the major
contributions of the proposed approach.

Frequency-based descriptor. A new local image descrip-
tor based on a frequency analysis of the y-axis projected profile
of the normalized image autocorrelation function.

Multi-scale framework. A multi-level approach with
a voting procedure to exploit spatial consistency between
frequency-based image descriptors at different scale levels.

Evaluation. To assess our method, we present an exten-
sive evaluation of the proposed algorithm, applied to a huge
heterogeneous corpus content.

II. RELATED WORK

Document analysis is one of the most studied fields in
image processing. A huge amount of work has been pre-
sented to deal with segmentation [6], line extraction [7], char
and word spotting [8], [9], and classification of handwritten
manuscripts [10], [11]. An exhaustive review is far outside
the scope of the paper, and the reader is referred to various
recent surveys [12], [13]. Here, we discuss only the techniques
closely related to ours.

Integration profiles. Commonly used approaches to de-
termine text height estimation are based on Projection Pro-
files [14], [15], [16], XY-CUT algorithm [17], and Run Length
Smearing Algorithm (RLSA) [18]. They are all based on
different ways to directly integrate the original image along



rows, columns or, rarely, diagonal directions. They are based
on a priori strong assumptions, and short lines or very narrow
lines with overlapping descenders and ascenders will produce
a weak signal. While these approaches are mainly used for
printed documents, some papers adapted them to handwritten
ones with little overlap between lines and moderately skewed
texts [19], [20]. Although these solutions are typically faster,
they are very sensitive to noise, and not robust enough to be
directly applicable to a generic handwritten, possibly damaged
manuscript, with generic layout rules, and other irregulari-
ties. Further, they are not completely automatic approaches,
because, to avoid local minima in the analysis of projection
profiles, some manually defined parameters are needed [21],
[22].

Local descriptors. Recent works perform handwritten text
characterization by extracting orientation-based features, such
as a histograms of oriented gradients [23], Gabor descrip-
tors [24], scale invariant features [25], and an autocorrelation
function [3], [5], allowing analysis of documents with unspec-
ified layout structure. The main issue is that all mentioned
techniques require user intervention, either to train some
classifiers [25], or to manually set some parameters that are
strictly dependent on the document text height, such as the
neighborhood radius in Garz et al. [4] or the size of kernel
windows in Mehri et al. [3]. Although these solutions are very
robust to noise, manually adjusted parameters limit the range
of their applicability, and make them unsuitable for massive,
non-homogeneous corpus.

Multi-scale representations. Exploiting a multi-resolution
representation and a frequency-based framework is a well-
known approach in image analysis (e.g., [26]), which has
been applied to a plethora of applications. In the specific
field of document layout analysis these methods are typically
used to segment document images scanned from newspapers
and journals [27], [28]. Recently, Almeida et al. [29] use
wavelets to reduce ink show-through noise in scanned images.
Joutel et al. [30] presents a multi-level curvelets decomposition
of ancient document images for indexing linear singularities
of handwritten shapes; it allows for applications such as
manuscripts dating, expertise and authentication of its author,
style and period.

Our contribution. Instead of relying on projection profiles
directly obtained from the original image, we compute the y-
axis profile of the normalized autocorrelation function, which
is more robust. It is independent of document brightness and
contrast, and skewed text. Instead of defining some parameter
values to properly deal with local maxima and minima in
the profile, we analyzed it by extracting its discrete fourier
coefficients, and by estimating the most predominant spatial
frequency in a parameter-free manner; this is robust to noise
in the projection profile as well. A complete and reliable
automatic solution is achieved by integrating this local image
representation into a multi-scale framework, where a descriptor
is computed at different scale levels. An extensive evaluation
is presented, proving the robustness and reliability of the
proposed method, and showing that it is well-suited for huge
digital libraries with a high variability of layouts, syles and
levels of conservation.

sI1 
sI1 sI2 

sI3 sI4 

Level 0 Level 1 Level 2 

… 

For each level n 

sI1 

sI2 

… 

sI22n 

NACF1 yPP1 DFT1 

PMFn NACF2 yPP2 DFT2 

NACF22n yPP22n DFT22n 

PMF0 PMF1 … PMFN-1 

∑PMFi 

Multi-scale 

Representation 

Text Height 

Estimated Value 

Level  

N-1 

PMF2 

Fig. 1: Algorithm pipeline. Given an input image we compute
its multi-level representation. After estimating the text height
Probability Mass Function (PMF) for each level, we obtained
the final estimation by a voting framework across all levels.

III. TECHNIQUE OVERVIEW

In Fig. 1 we outline the pipeline of the proposed technique.
The algorithm is given an input manuscript image. First we
produce a N -level multi-scale representation; at level n, we
split each original image in 22n small sub-images. Then, we
analyze these levels separetely. For each of their sub-images
we compute the normalized autocorrelation function (NACF),
and we integrate this signal to obtain its y-axis projection
profile (yPP). We find the main periodicity of the yPP by
applying the Discrete Fourier Transform (DFT). We use the
information corresponding to the highest DFT coefficient from
all sub-images to compute, for level n, an estimation of the text
height in terms of probability mass function (PMF). Finally, we
exploit the coherence between levels to find the final estimation
of the page text height, by accumulating all the PMFs from
all levels.

IV. TEXT HEIGHT ESTIMATION

In this section we explain in detail the proposed technique;
for display purpose only, we use the sample image in Fig. 2a to
show all the steps of our approach. In general, the input data is
unconstrained; the only requirement is that it is an image of a
manuscript containing text. It can have figures, ornamentations,
capital letters, portraits, touching and overlapping texts, and
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Fig. 2: Frequency-based descriptor. Given a sample image (a), for each sub-image at each sub level we compute the normalized
autocorrelation function (NACF)(b). We show the NACF integration along x axis to obtain the y-axis projection profile signal
of the top-right sub-image at level 1 (c), and its discrete fourier coefficients (d).

can be affected by background noise, ink bleed-through and
other kinds of damage due to ageing. The only mild assump-
tion is that either the input text is quasi-horizontal, or that a
pre-processing step is applied in order to correct the overall
page orientation. This could be easily done by employing the
well known Rose of Directions method [31]; here, in section V,
we also present an alternative solution to correct orientation.
In our case, however, since we use operators that are very
robust to skewed texts, we will see how this is a very relaxed
constraint, and how typical acquisition setups do not require
any alignment correction at all. Hence, to produce the results
in section VI, we do not use any orientation correction.

A. Multi-scale representation

First, we compute a multi-scale representation of the input
image. Considering a particular level n we split the original
image in 22n small sub-images. The number of levels must be
fixed; it must be uncorrelated with the acquisition resolution,
and independent of the text height, the layout and the structure
of the manuscript page. Since multi-scale analysis is based on
consistencies across different levels, the more levels, the more
robust is the algorithm. However, given an arbitrary high level
value, the probability that a sub-image contains one or more
text lines tends exponentially to zero. We experientially found
that a 5-level multi-scale representation is a reliable parameter
value.

B. Single level analysis

After building the multi-scale representation, we perform a
separate analysis of each obtained level. We start by computing
the normalized autocorrelation function of each sub-image at
that level. The autocorrelation function for a two dimensional
signal is defined by:

ACF (x, y) =
∑
α∈Ω

∑
β∈Ω

I (α, β) I (α+ x, β + y) (1)

The autocorrelation value at position (x, y) is the sum of
the products of the grayscale image values I (α, β) and the
pixel values after a translation of (x, y). The normalized
autocorrelation function (NACF ) is:

NACF (x, y) =
ACF (x, y)−minACF (x,y)

maxACF (x,y) −minACF (x,y)
(2)

where min and max are the minimum and maximum values
of the autocorrelation function. Fig. 2b shows the normalized

autocorrelation functions of sub-images at level 1. We can
clearly see the difference between sub-images that contain text
lines or figures.

To extract the spatial periodicity of the patterns that corre-
spond to text regions, we compute the y-axis projection profile
of the NACF . In Fig. 2c we superimpose the NACF and
the profile (white curve) of the top-right sub-image at level 1.
We analyze its frequency footprint by computing the Discrete
Fourier Transform (DFT) coefficients. After discarding the
constant component (i.e., 0-index coefficient), the coefficient
with the highest amplitude corresponds to the predominant
spatial frequency. In other words, if the maximum amplitude
coefficient has index n, it means that the signal has n periods
inside the studied domain. After computing the DFT of the
profile in Fig. 2c, in Fig. 2d we plot the amplitude of the
first 100 coefficients. The 12th coefficient has the highest
amplitude, i.e., the profile in Fig. 2c has 12 periods. For
each sub-image, the size in pixels of that period, obtained by
dividing the sub-image height by the number of periods, is a
possible candidate value for the text height estimation at that
particular level.

Now we have to merge the information of all the sub-
images. In a histogram we accumulate the amplitude of the
22n most relevant coefficients, and the index with the highest
amplitude integral is the winner for the current level. For
instance, in Fig. 2b, whose amplitudes fall into histogram bin
12, while there is only a single amplitude in bin 1. However,
due to the discrete nature of the performed analysis, we do
not want to produce a single level value for the text height
estimation. On the other hand, for each level n, we prefer to
build the following Gaussian probability mass function (PMF)
of the text height random variable t:

PMFn (t) = wn × e
− 1

2
(t−µn)2

σ2n (3)

µn =
thminn + thmaxn

2
, σ2
n = |thmaxn − µn|2 (4)

where thminn = heightn/ (in + 0.5), thmaxn =
heightn/ (in − 0.5), in is the winner coefficient index,
and heightn is the height of the level sub-image. The
level-based normalized weight wn:

wn =
1

Cn × widthn

Cn∑
χ=1

Aχn (5)



serves to make the PMFs from different levels comparable.
Cn is the number of coefficients that contribute to the winner
index in, Aχn is one of their corresponding amplitudes, and
widthn is the width of the sub-image at level n.

C. Multi-level analysis

The result of the previous step is a bunch of N Gaus-
sian probability mass functions. Each one gives a per-level
estimation of the possible text height value for the analyzed
page. We want to combine all these PMFs, considering the
property that sub-images containing text at different levels
produce similar expected values, even if the number of periods
or the corresponding amplidutes are different. We compute a
voting function by accumulating all the PMFs, and the value
tE corresponding to its maximum is the final text height
estimation for the manuscript page. Fig. 3a shows the multi-
level voting function obtained by accumulating PMFs from the
sample image in Fig. 2a. In Fig. 3b we draw a square with the
edge size equal to the corresponding estimated tE .
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Fig. 3: Multi-level analysis. A voting function is obtained
accumulating all the N Gaussian probability mass functions
from all levels (a). The height corresponding to the maximum
of this function is the estimated text height (tE). To check
the quality of the algorithm outcome, a square with edge size
equal to tE is drawn over the original text (b).

D. Implementation

The direct computation of the autocorrelation function as
expressed in equation 1 is computationally inefficient. How-
ever, we can use the Plancherel theorem, which allows us to
more efficiently express the equation in terms of the image
Fourier transform [3]. We have found that the contribution
of the level 0 to the computation of the final text height is
generally very poor. Since its analysis is the most computation-
ally expensive, by discarding that level we obtain a significant
speed up without changing the output result. Based on the
properties of the normalized autocorrelation function and its
y-axis profile, we can apply an outlier pruning strategy in the
single level PMF computation step. Image parts that contain
figures don’t have a main direction, so their NACF is typically
a homogeneous signal with a high value at the center pixel; its
profile is a curve with one high central peak, and a decreasing
behaviour as a function of

∣∣ 1
x

∣∣. In these cases, the index of
the most relevant DFT coeffient is 1 (index 0 is the constant
coefficient), i.e., one period in the studied domain. Since we

are looking for spatial periodicities, we avoid accumulating all
these coefficients with index in ≤ 1.

V. ORIENTATION CORRECTION

The algorithm described above works well for images
without strong skew. But in a more general case where the lines
of the texts within images of scanned documents could have a
certain amount of skew, we need to deskew the input images
before applying our algorithm. This sub-section describes a
simple but efficient pre-processing step that determines the text
skew and orientation.

The main idea is based on the fact that the text within
the test images has obvious vertical patterns with respect to
one viewing direction (see Fig. 4 (b) and (c)). Thus we can
calculate the skew angle for a given input image by detecting
the straight lines within it and looking into the statistics of the
angles between these line segments and the x- or y-axis. More
specifically, given a test image, we convert it into a binary
image. Note that a number of image binarization algorithms
have been proposed [32], [33] and that we use the method
by Otsu et al. [32] in this paper. After that, we utilize the
recent line detection technique by Gioi et al. [34] to detect all
the line segments in the binary image. Assuming that (x1, y1)
and (x2, y2) are the coordinates of the two endpoints of the
i-th line segment and, without loss of generality, y2 ≥ y1, we
define the angle θi formed by this line segment and y-axis as

θi =


arccos

(
y2 − y1

‖(x2 − x1, y2 − y1)‖

)
if x1 ≤ x2

− arccos

(
y2 − y1

‖(x2 − x1, y2 − y1)‖

)
otherwise

(6)

where ‖·‖ stand for the l2-norm, and θi ∈ [−90◦, 90]◦ is
actually the angle between the vectors (x2 − x1, y2 − y1) and
(0, 1). Finally, we build a histogram of all θi with N bins and
consider as the image skew angle θ the angle that corresponds
to the peak of the histogram. Let f(αi) be the frequency for the
i-th histogram bin centered at αi degrees. Then the skew angle
θ is given by θ = argmax

αi

f(αi). The sign of θ represents the

direction of skew. That is, if θ < 0, we need to rotate the
image clockwise by −θ degrees to make the textlines parallel
to the x-axis; otherwise, we make a counter-clockwise rotation
by θ degrees.

VI. RESULTS

We tested our algorithm on 21 Medieval manuscripts (6922
pages), written by hand before 1500 AD; they are from
Yale University’s Beinecke Rare Book and Manuscript Digital
Library [35] (a set of scripts is available [36] to download
the book database). Those books are very different from each
other, in terms of acquisition resolution, level of conservation,
amounts of figures or ornamentations, and writing styles. Our
technique was implemented on Linux using C++ and the
OpenCV library [37]. Our benchmarks were executed on a PC
with 8 Intel Core i7-3630QM CPU @ 2.40GHz processors,
12GB RAM, and a NVidia GeForce GTX 650M.

Given an input page, it is very difficult to manually define
a correct and unique text height, because it changes across
the single page or even across a single line. Both when it
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Fig. 4: Ground truth. Given a 100 image dataset, the maxi-
mum error is 14% as seen in (a), and corresponds to the square
edge size tE in (b). (c) shows text variability across a single
page.

Fig. 5: Visual evaluation. We present some check images,
corresponding with acceptable (a) or unacceptable results (b).

is manually set [3], [4] and in our automatic estimation, the
reliability of the text height value is inversely proportional to
character size variability. We performed two different kinds
of evaluations, to understand if this computed value is below
an acceptable error or not. In the first case, we produced
a ground truth dataset; we randomly took 100 images from
all the datasets, with different resolutions, text heights and
types of manuscript, and manually measured the text height
for each of them. We then compared those values with the
ones automatically computed by the algorithm. In Fig. 4a

we plot the relative error of image i as εi = 100
|tiE−t̃iE|
t̃iE

,
where tiE and t̃iE are respectively the automatic and manual
estimated values. In the plot we sort the errors in a descendent
order. All the relative errors are under 15%, and in Fig. 4b we
show the image corresponding to the highest relative error, in
which we have drawn a square of edge size equal to tiE ; the
automatic estimated value well depicts the spatial periodicity

of the analyzed text, and it has a reasonable size for a general
layout analysis approach [3], [4]. Further, in Fig. 4c we show
how difficult it is for the user to choose a good height value;
the spatial text period in two adjacent lines varies from 140
to 160 pixels, with a difference of about 15% between them.
Thus, a 14% maximum relative error is an acceptable outcome.
However, this evaluation is only practical for a small subset
of images. We would like to check all the thousands images
in the studied books. This could be done only in a visual
manner and in a computer assisted framework. Hence, for each
image, after computing the text height value tE , the algorithm
draws a pattern of nine squares with edge equal to tE . The
original image with these overlapping squares helps the user
to quickly estimate if the analysis result is visually reasonable.
To understand the reliability of such evaluation, in Fig. 5 we
show details of some checked images, corresponding with both
acceptable and unacceptable results. We highlight with arrows
the squares that were particularly helpful to us in marking
the outcome as a good one. Table II shows a high rate of
good estimations; all the books are over 94%, with some even
achieving 100% accuracy.

Fig. 6: Illuminated manuscript pages. We present the original
image of the page and two highlighted parts; the squares have
edge lengths equal to the automatically estimated text height
tE .

Typical pages of illuminated manuscripts are shown in
Fig. 6. They contain text in two different colors, capital letters
of different types and sizes, the parchment background, other
figures inside the text and ornaments. The images could also
contain the dark acquisition background, and other visible parts
of the book. We present both the original images of the page
and one or more highlighted parts, with a square of edge size
equal to the estimated text height tE . This helps demonstrate
the conditions of the whole analysis domain, and to visually
appreciate the quality of the output. Although the result is
good, the pages in Fig. 6 are not so challenging, since they
are very well preserved and do not contain any kind of noise.
In Fig. 8 and Fig. 9, we present most of the problems that
arise when dealing with very old handwritten manuscripts.
The two pages in Fig. 8a are affected by significant ageing
and very bad preservation conditions; the result shows how
the proposed frequency-based descriptor is able to extract the
main image directions even at the presence of a very noisy
signal. It is also robust to low constrast signals, as shown in
Fig. 8b, where the ageing makes the ink almost disappear.
Due to the value of these rare books, the acquisition setup is
very controlled, both for preservation of their integrity, and to
produce the best possible digital images. However, some texts
could come out not perfectly horizontal, mainly because the
text could be skewed compared to the page edges. In our tests



we never used an automatic skew correction, and Fig. 8c proves
how the proposed technique is able to properly deal with such
skew texts. The multi-scale framework is convenient when we
need to cope with other extreme but unrare situations, such as
a low number of text lines (Fig. 9a) or a small percentage
of text in a page with a lot of figures and other non-text
elements (Fig. 9b). Two extreme cases are presented in Fig. 9c;
in one case, only a small part of the text is visible, and, in
the other, the page is very damaged and contains a lot of
comments written in different styles. We also demonstrate how
our approach is robust to the well known problem of ink bleed-
through, which makes the writing from the verso appear on the
recto (Fig. 9d). The page on the right in Fig. 9d is affected
by bleed-through, it contains very few text lines, a lot of
noise and other handwritten signs. Since the presented method
aims at finding the most predominant spatial periodicity in
the page, we have seen that it fails when there are some
concurrent high amplitude frequencies. This occurs when the
text is not organized in a regular manner, or, in other words,
when the inter-line spacing has high variability. The failures
(bad images) in table II are always similar to those in Fig. 8d;
on the left the bad estimated text height value clearly depends
on the groups of three text lines, while the case of the right
contains both a non-regular text line pattern and an additional
comment part in the bottom, written (perhaps by a different
author) with a completely different style.

To evaluate the performance of the method for text ori-
entation correction, we arbitrarily rotated the 100 randomly
selected images and applied the method to the rotated images
to obtain the skew angles θ. In this experiment, we fix the
number of histogram bins at N = 360. Fig. 7 (a) shows the
absolute angle error/difference between the computed skew
angles θ and their corresponding groundtruth rotation angles.
From this figure, we see that our orientation correction method
is able to find the skew angle at a satisfactory rate, that is,
with an angle error of less than 1.5 degrees, up to 94% of
the time. After comparing the white horizontal reference line
in Fig. 7 (b) and the text orientation, it is clear that the
error of 1.5 degrees is trivial and thus absolutely acceptable
for practical applications. Fig. 7 (c) shows a close-up of
the image that corresponds to the highest angle error of
5.54 degrees. Although the error is 5.54 degrees, our method
actually outputs the expected skew angle because we can,
upon close inspection, observe that the strokes of the texts are
approximately perpendicular to the white horizontal reference
line. In addition, it is worth mentioning here that the proposed
text height estimation algorithm can tolerate a skew of up to
6 degrees (see Fig. 8 (c)).
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Fig. 7: Text orientation correction. (a) Angle error. Close-
up of an image with angle error of 1.58 degrees (b) and 5.54
degrees (c).

Book Name # Figure Pages Precision Recall
BeineckeMS310 23 0.92 1.0
BodleianMSGoughLiturg.3 5 0.45 1.0
BodleianMSLaudMisc.204 16 0.88 1.0
Walters34 26 0.89 1.0

TABLE I: Precision and Recall values in the retrieval of those
pages that contain only figures.

Although the automatic text height estimation is just the
first important step to building a completely automatic layout
analysis framework, this simple output can lead to some inter-
esting results. It turns out that the text size measured across all
the pages of a single book is somehow consistent, while the
text height estimation for pages without any text is random. By
exploiting the text height and the color statistical distribution
(average and variance) across the same book, we can distin-
guish between pages that contain text and pages that contain
only figures. In table I we show the precision/recall results
after applying this segmentation to books having pages with
only figures. The true positive are the pages well segmented
that contain only figures, while the false positive/negative
are bad segmented pages that respectively do not/do contain
only figures. In our experiments the recall value equal to 1
because we do not have any false negatives. Another possible
application could be a tool that gives scholars an ordered list
of pages based on the computed statistical distribution; i.e.,
users can analyze a book by first sorting its pages according
to the level of image or text content.

VII. CONCLUSIONS

We have presented a method to perform automatic text
height estimation, without the need of any kind of manual
intervention and user defined parameters. We have tested our
algorithm on a large heterogeneous corpus of 21 medieval
books, containing almost seven thousands pages. With an
average per-page computation time of 5 seconds and more
than 99% good text height estimations, it has proved to
be very robust and reliable in the case of very noisy and
damaged manuscripts, with different writing styles, text sizes,
image resolutions, levels of conservation, and affected by
other countless uncontrollable factors, such as holes, spots, ink
bleed-through, ornamentation, background noise, and touching
text lines. Future work will use this technique as a first step of a
more general document layout analysis framework, which will
exploit the capabilities of the presented frequency-based local
descriptor. Due to the intrinsic parallel nature of the presented
analysis, a GPU-based implementation is straightforward, and
would make it more suitable for processing a large database.
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BeineckeMS109 1822 x 2416 270 19 251 251 (100%) 0 (0%) 4m (1sec/pg)
BeineckeMS360 1654 x 2083 382 11 371 371 (100%) 0 (0%) 3m (0.5sec/pg)
BeineckeMS748 2313 x 3232 8 0 8 8 (100%) 0 (0%) 11s (1sec/pg)
BeineckeMS525 2053 x 2855 46 4 42 42 (100%) 0 (0%) 1m (1sec/pg)
BodleianMSBodley113 5329 x 7487 315 12 303 292 (96%) 11 (4%) 75m (14sec/pg)
BodleianMSBodley850 5370 x 6959 246 16 230 217 (94%) 13 (6%) 41m (10sec/pg)
BodleianMSDouce18 5167 x 7155 534 17 517 505 (98%) 12 (2%) 2h27m (14sec/pg)
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BodleianMSLaudMisc.204 5170 x 7013 286 36 250 246 (98%) 4 (2%) 1h38m (21sec/pg)
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# books - 21 6922 333 6589 6519 (99%) 70 (1%) 10h (5sec/pg)

TABLE II: Text height estimation statistics.
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