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Abstract

We consider the representation of densely sampled
scanned 3D objects. Scanning physical objects can be an
efficient way of obtaining natural looking input for com-
puter graphics image generation. Scanned meshes however
require large amounts of storage. For applications such
as computer graphics, preserving the look of objects rather
than precise measurements is critical. We seek a represen-
tation that preserves characteristic features at both low and
high spatial frequencies. Our proposed representation con-
sists of a simplified base mesh and characteristic detailed
patches. The detailed patches contain a spatially dense
sampling of mean curvature on a small region on the object
surface. A large initial set of patches covering the object
is segmented into sets of patches using k-means clustering.
Each cluster of patches is then compactly represented with
Gaussian distributions. We present comparisons of a series
of original scanned objects and the objects reconstructed
from the compact representation.

1. Introduction

The widespread availability of 3D scanners makes it pos-
sible to get densely sampled models of physical objects.
The scanned models, usually in the form of triangle meshes,
are very precise and detailed representations of objects.
Such representations are highly useful in applications such
as the documentation of cultural heritage.

However, for other applications such as computer graph-
ics, it is more important to preserve the characteristic fea-
tures of objects than the precise measurements. From a par-
ticular scanned model, it is useful to generate a variety of
novel models which look similar but different in order to
populate a synthetic scene. Because the densely sampled
triangle mesh doesn’t directly encode the characteristic fea-
tures of an object, it can not be used directly in authoring
similar objects.

In this paper we present a compact representation of
densely sampled model which consists of a much simpli-

fied base mesh and representative patches. This is based on
the observation that local areas of objects often experience
statistical similarity and structural correlation. For example,
rocks are bumpy all around the surface and seashells have
the characteristic spiral curves. We cluster into groups the
densely sampled local patches using a k-means method and
use Gaussian distributions to model each group of patches.
This statistical model of local patches not only saves storage
and network bandwidth, but also provides us with a method
to generate similar models.

The main contribution of the paper includes: (1) a sta-
tistical model of local patches; (2) curvature-domain local
shape descriptor; (3) a compact mesh representation based
on statistical patch model; and (4) approaches of automati-
cally authoring similar models.

The rest of the paper is organized as follows: after review
the related literature in section 2, we introduce the statistical
patch model in section 3 and the compact mesh representa-
tion in section 4. Results are shown in section 5 and future
work is discussed in section 6.

2. Related work

The work presented here builds on several areas of ge-
ometric modeling – modeling using 3D scan data, multi-
resolution meshes, detecting and exploiting redundancy in
models, and geometric texture transfer. We briefly review
this previous work, and highlight how the problem and so-
lution we consider differs from it.

Parts of existing models, including models produced by
3D scanning, can be used as input for new models [7]. How-
ever rather than using entire “chunks” of existing models,
we hope to reuse characteristic shapes of objects, particu-
larly natural objects such as rocks. Characteristic shapes
are associated with materials [1].

In computer graphics, procedural modeling has domi-
nated the creation of models of natural objects. For exam-
ple, there have been efforts at finding mathematical descrip-
tions of the basic shapes of natural objects such as shells [6].
To model natural irregularities in shape procedures such as
Perlin noise [21] are added to geometries representing nat-
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ural shapes such as terrains defined as height fields [20].
Natural looking effects have relied on manual tuning of pa-
rameters, or using general image statistics [22]. Following
one aspect of the procedural approach, we seek to define
models in terms of an overall form that is modulated by
high spatial frequency details.

Multiresolution representation for geometric models is a
highly developed area for efficient shape editing and ren-
dering, e.g. [9]. The representations consist of multiple
meshes capturing geometric features at different frequency
bands. Since eliminating redundancy is not a goal of the
representation, precise detailed information is recorded at
multiple levels. The mesh at a particular level can be ob-
tained by adding the recorded details into the mesh at the
adjacent lower level. In our work we concern with separat-
ing the basic form of an object and the shape details that are
characteristic of the material forming the object, so we do
not consider these multi-level representations but simply a
two level representation.

Since we seek a compact representation, we look for re-
dundancy in models. One approach to this is symmetry
analysis of shapes which aims to find spatial invariant of
geometry elements under 3D transfer, rotation and scaling,
e.g. [16]. This kind of symmetry is widely presented in
some objects such as buildings. Other objects like rocks
don’t necessarily have the “perfect” symmetry. The work in
this paper doesn’t rely on repetitions but rather on similari-
ties in a statistical sense.

To find groups of similar, but not identical features, we
consider clustering. Clustering has been applied long before
for understanding images. Clustering textons into multiple
groups is usually one of the basic steps for image segmen-
tation and texture classification, e.g. [23]. For regular tex-
tures where textons are tiled in structure, researchers have
proposed approaches to automatically identify the textons
and extract their spatial organization, e.g. [14]. These ap-
proaches are similar to those of shape symmetry analysis,
and don’t extend to statistical textures directly. For the re-
sults of clustering, we will not try to find a specific regular
structure.

Given a description of “typical” high spatial frequency
features, a natural mechanism for applying these features
to a basic form is texture transfer. Many methods have
been developed recently for the transfer of geometric tex-
ture. These may be divided into two classes – methods that
transfer a different material or different ornamental features
to a base form, and methods that enhance the surface vari-
ations of the basic object. An example of a detailed ad-
ditional material is adding a volumetric layer to a surface
to represent fur [10]. Examples of ornamental features in-
clude wire meshes, basket weaves, or patterns of repeated
small decals that are represented as meshes on a flat surface
that are deformed and repeated to cover a shape [5, 24]. Ad-

ditional material or ornamental features are generally mod-
eled separately, rather than being extracted from an existing
model.

The second category of geometric texture transfer, that
enhances the surface variations of the base form rather than
adding a new layer of material, is relevant to the problem
we address. In this case, methods have been developed
that attempt to extract detail from basic shape of one ob-
ject, and then apply detail to a new shape. Bhat et al.[2]
synthesize geometric textures using voxel definitions of the
object and fine scale geometry. A vector field on the sur-
face is used to guide the synthesis on the base surface. Lai
et al.[12] transfer using geometry images rather than volu-
metric structures. In both cases the transferred geometry is
found from an existing object by defining a smoothed and
simplified base object. The geometric height field or geo-
metric structure then depends on the specific simplification
that is made. In our method we attempt to find a detailed
surface description that is independent of arbitrarily speci-
fying a surface depth to define the difference between small
and large scale features.

In the general field of texture transfer it has been rec-
ognized that the texture should be correlated to large scale
geometric features. Texture transfer that uses analysis of
underlying geometry has been proposed in particular to cap-
ture the look of weathered objects [15, 17]. Accounting for
pattern variations with large scale variations is important
in weathered appearance since it depends on the actions of
natural phenomena. Similarly, to capture the fine scale geo-
metric variations of natural objects we will account for the
underlying large scale features.

Many different types of surface maps have been pro-
posed to model surface detail, including texture, bump, dis-
placement and normal maps [19]. Maps are an effective way
to represent fine scale features in a compact form. For ex-
ample, de Toledo et al. consider using height fields as a ge-
ometry texture map over an entire object to store mesostruc-
ture [3]. However, synthesizing fine scale geometry as dis-
places or normals requires careful and time consuming at-
tention to continuity to avoid obvious artificial discontinu-
ities in surfaces.

A way to avoid the problems of arbitrarily defining a
depth layer for details and the discontinuities in synthesis
of displacement or normal maps, is to characterize details
in the curvature domain. Eigensatz introduced the idea of
modeling in the curvature domain [4]. Working with cur-
vature captures the appearance of the object without first
defining a base mesh for offset, and without compensating
for a particular coordinate system. Working with a higher
order quantity such as curvature and then synthesizing the
surface avoids obvious surface discontinuities.

Based on this assessment of previous work, in the next
sections we develop our approach for compactly represent-
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ing surfaces. By working in the curvature domain we invert
the usual process of simplifying a surface and then defining
details by differencing the detailed and simplified meshes.
In the next two sections we describe how we first analyze
the curvature variations in small local areas (i.e. patches) on
a mesh and define a small set of patch descriptions, and then
define a compact mesh representation designed to make use
of these patch descriptions.

3. A Statistical Model for Local Patches

Our analysis of an object’s shape begins by considering
the characteristics of small areas distributed over the object
surface. We can consider characteristics without reference
to a base mesh or to the global coordinate system by work-
ing in the curvature domain. Similar local areas are often
observed at different surface locations of an object. We in-
troduce a model in this section to express this similarity sta-
tistically using clustering and Gaussian distributions.

3.1. Shape descriptor for local patches

We consider a collection of vertices V, edges E and faces
F that form a triangle mesh M = {V, E, F}, which ap-
proximates a smooth 2-manifold. Let NV = |V | denote the
number of vertices, let pi denote the i-th vertex and let xi,
ni and Hi denote the position, normal and mean curvature
of pi, respectively.

Given a vertex pi on M and a small radius r, there is a
neighborhood of pi which consists of all the points on M
with a geodesic distance to pi less than r. Such a neighbor-
hood is called a local patch of pi, denoted by Pi.

A shape descriptor is computed for each local patch. The
shape descriptor should have the power to reconstruct the
patch. Mean curvature is used because of its character of
being intrinsic (independent of the global coordinate sys-
tem) and because no reference base mesh is required ( as is
required to define a height field). Mean curvatures at ver-
tices are computed using the mesh Laplacian with cotan-
gent weights [18] as shown in equation 1, where Ai is one-
third of the 1-ring neighborhood area of pi, N1(i) is the set
of 1-ring neighborhood vertices of pi, and αij and βij are
the opposite angles of edge (pi, pj), as shown in Figure 1.
Mean curvatures at other surface points are computed by
bilinearly interpolating vertex curvatures using barycentric
coordinates. We uniformly sample the mean curvatures on
the local patch and form a vector of mean curvatures as the
shape descriptor for this patch.

2Hini =
1

2Ai

∑
pj∈N1(i)

(cotαij + cotβij)(xi − xj) (1)

Local parameterization is used to efficiently compute the
local patch and the spatially regular sampling positions. For

pi pjpi pj

ij

ij

Figure 1. 1-ring neighborhood of a vertex

a particular vertex pi, we first parameterize its neighbor-
hood onto a 2D domain, with pi mapped to the origin, us-
ing LSCM (Least Squares Conformal Maps) [13]. The pa-
rameterization produces, for each surface point within the
neighborhood, a corresponding (u, v) parameterization co-
ordinate. By approximating the geodesic distance on the
surface with the Euclidean distance on the parameterization
domain, the local patch Pi is then computed as the set of
surface points whose parameterization coordinates have the
property as u2 + v2 < r2, that is, the set of points whose
corresponding points on the parameterization domain locate
within the circle centering at the origin and with a radius of
r.

The sampling process for computing the shape descrip-
tor is also done in the parameterization domain. Given a
sampling distance d, all the sampling positions are found as
the lattice points in the parameterization domain as shown
in Figure 2(d). By composing the mean curvatures sampled
at the corresponding surface points into a vector, we get the
shape descriptor Si = (Hij) with 1 ≤ j ≤ Ns, where Hij

is the mean curvature sampled at the j-th sampling point of
the i-th patch and Ns is the number of sampling positions.

In practice, the parameterization domain is rotated be-
fore the computation of shape descriptor such that the most
significant direction always coincides with the X-axis, as
shown in Figure 2(c). The most significant direction is
defined as the direction which has the maximum absolute
value of average mean curvatures. An orientational his-
togram is used to compute this direction and only the mean
curvatures at vertices are considered to accelerate the pro-
cess.

3.2. K-means clustering and Gaussian distribution

By sampling at different local areas along the object sur-
face, we get multiple local patches and their shape descrip-
tors. Let NP denote the number of local patches. Those lo-
cal patches may have distinct shapes. As shown in Figure 3,
for example, patches along the edges of the object and those
at the flatter area are quite different. The difference is mea-
sured with Euclidean distance in the high dimensional shape
descriptor space. A k-means clustering method (Lloyd’s al-
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(a) Local patch in 3D. Mean
curvatures are visualized with
red for large and blue for small.

(b) Local patch in 2D

(c) Reoriented local patch in
2D

d

rr

(d) Regular sampling

Figure 2. Compute shape descriptor for a local patch.

(a) Clustering result for stoneA. (b) Clustering result for stoneC.

(c) Clustering result for stoneL. (d) Clustering result for
Wooden House.

Figure 3. Clustering results. Different color stands for local areas
of different clusters.

gorithm, as described in [11]) is applied to group the NP

shape descriptors into K categories Gi, 1 ≤ i ≤ K , with
|Gi| = NGi .

The shape descriptors in each group Gi form a cloud of
NGi points in a Ns-dimensional space. We use a 1D Gaus-
sian model to represent the distribution of the point cloud in
each dimension, which produces a compact representation
with the sacrifice of losing the correlation information be-
tween different dimensions. The Gaussian distribution for
the j-th dimension of i-th group is shown in equation 2.

Gaussij(x) =
1

σij

√
2π

exp(
−(x− μij)2

2σ2
ij

) (2)

The mean μij is computed as

μij =

∑
k|Sk∈Gi

Hkj

NGi

. (3)

The standard deviation σij is computed as

σij =

√√√√ 1
NGi − 1

∑
k|Sk∈Gi

(Hkj − μij)2. (4)

4. A compact mesh representation

The densely sampled triangle mesh can be compactly
represented using a base mesh which captures the low fre-
quency features and a group of Gaussian distributions which
capture the high frequency features. Rather than using ex-
isting simplification methods (e.g. [8]) that see to maintain
dimensional accuracy, we define a base mesh that is com-
patible with using Gaussian distributions of patch curvature
described in section 3.

4.1. Encoding the base mesh

In order to record the low frequency and large scale fea-
tures of the object, we first simplify the input dense mesh
M to a base mesh Mb. The simplification is done in two
steps, choosing the retained vertices and reconstructing the
triangle mesh from the retained vertices.

We choose retained vertices from the original mesh M .
The selection is constrained by two factors: (1) the vertices
are uniformly sampled along the surface such that each has
a neighborhood approximating the predefined patch size,
that is, the distance between adjacent vertices should be
about twice the patch radius r so there will be no large
overlaps or gaps between patches; (2) the retained vertices
should capture the geometric features as well as possible.
Mean curvatures are used as guidance for vertex selection,
and the vertex with larger absolute value of mean curvature
will be selected with higher priority than others, since these
vertices represent areas with distinctive features.

A triangle mesh is then built up from the retained ver-
tices. We first flood-fill the surface of the mesh M from all
of the retained vertices and get a partition of the mesh. Then
we compute the dual graph of the partition to get a polygon
mesh M ′ and M ′ is then converted to a triangle mesh Mb by
further subdividing each non-triangle polygon into multiple
triangles.

The resulting base mesh is formed by a much smaller set
of vertices that all lie on the original mesh.

4.2. Encoding the details

The local shapes of the dense mesh is recorded using
statistical patch models introduced in section 3. For each
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retained vertex, we find the local patch on the dense mesh
M with a predefined size r. We compute a shape descriptor
for each neighborhood. We then perform patch analysis as
shown in section 3 on those shape descriptors. Finally we
get a Gaussian distribution parameters table of K rows and
Ns columns. For each vertex in the base mesh Mb, we keep
an index to the table rows to record the type of the local
patch, and a scalar value to record the rotation angle for
reorienting the local patch.

4.3. Decoding

We can reconstruct a dense mesh from the compact rep-
resentation in four steps: (1) tessellate the base mesh into
higher resolution; (2) for each original vertex on the base
mesh, compute a local patch shape descriptor using the
recorded statistical model and reorientation angle; (3) re-
sample the shape descriptors so all vertices of the tessel-
lated mesh have a mean curvature defined; (4) reconstruct
the mesh from vertex mean curvatures.

The reconstruction is formulated as an energy minimiza-
tion problem

arg minX(w2
H‖L(X)−H(X)‖2 + w2

p‖Xb−X0
b ‖2), (5)

where X denotes the current vertex positions, H(X) de-
notes the vertex mean curvature normals, L(X) denotes the
mesh Laplacian with cotangent weights, Xb denotes the cur-
rent positions of vertices of the base mesh and X0

b denotes
the original positions of those vertices. wH and wp denote
the weight of mean curvature constraints and the weight of
positional constraints. That is, we need to solve in least
squares sense the following system

(
wHL
wpI

)
X =

(
wHH(X)

wpX
0
b

)
. (6)

The system is nonlinear because both L(X) and H(X) are
nonlinearly dependent on X . We solve it by iteratively up-
dating L and H using current X and then updating X by
solving a linear system.

5. Results

We demonstrate in this section results of using statistical
patch models to compactly represent dense triangle meshes
and geometric detail transfer based on the compact repre-
sentation. All the experiments were done on a 3.0 GHz
Pentium IV PC with 3GB memory. Predefined values of
patch size r = 5.0mm and sampling distance d = 0.5mm
are used for all models. Table 1 shows the times of comput-
ing the compact representations and reconstructing meshes
from them. Please note that we deliberately choose flat
shading to render all the meshes to better show how the ge-
ometry of the meshes are represented.

5.1. Clustering

Clustering is used to find statistical similarities and char-
acteristic features of objects. Figure 3 shows the clustering
results of several objects, each having been clustered into
4-6 groups. Small number of clusters are used for better vi-
sualization. Ridges, valleys and flat areas are well separated
into different groups. Because each local patch is reoriented
to the most significant direction, similar patches with differ-
ent 3D poses are still grouped together.

5.2. Compact representation

A dense triangle mesh is represented with a much simpli-
fied base mesh and representative local patch models. The
size of the compact representation is therefore determined
by two factors: (1) the size of the base mesh, which de-
pends on the patch size r; (2) the size of the table of patch
models, which depends on the number of clusters K and
the sampling distance d. Since both r and d are predefined
in the experiments, only K influences the final size of the
representation. K for fractal surfaces such as bumpy rocks
can be quite small for an acceptable reconstruction. In our
experiments for various stones, we always set K to 4. For
other objects like the Buddha shown in Figure 4(j) - 4(l),
a larger K has to be used to account for its many features
such as the nose, eyes and hairs, etc., which are different
and unique.

5.3. Reconstruction

Figure 4 shows results of reconstructing dense meshes
from compact representations. It can be seen that the com-
pact representations add detail to the simplified meshes.
However, compared to original meshes, the reconstructed
ones are still missing high frequency information and thus
look more smooth. We believe that is because the Gaus-
sian distribution model is not adequate to accurately record
detail geometry. We will exploit more advanced statistical
models in future.

5.4. Detail transfer

The Gaussian distributions represent characteristic
patches of objects, and can be directly used to transfer de-
tail geometry from one object to another. In Figure 5, we
show examples of transferring detail geometry of stoneA
as shown in Figure 4(a) to several objects. The transfer is
guided by the correlation between the based meshes. That
is, for each local patch of the target base mesh, we compute
a shape descriptor and then identify its cluster by finding its
nearest neighbor in the space of the shape descriptors from
the source mesh. In this way, we can get Gaussian distri-
bution models from the source mesh for each local patch of
the target.

1797



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4. Reconstructions from compact representations. Left column: original meshes; center column: simplified meshes; right column:
reconstructed meshes. First row: StoneA; second row: StoneB; third row: StoneC; last row: Buddha.
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M size of M size of Mc Tsimp Tsd Tstat Tcompcurv Trecon

StoneA 2.23 0.15 27 67 6 89 23
StoneB 1.90 0.12 32 40 1 62 15
StoneC 0.95 0.07 16 19 1 34 7
Buddha 3.81 0.59 108 30 15 49 10

Table 1. Timing results and sizes of representations from our experiments. Time is in seconds. Size is in MBytes. Mc stands for the
compact representation which includes both the base mesh and the statistical patch models. Tsimp, Tsd and Tstat stand for the time
computing base mesh, shape descriptors and statistical patch models, respectively. Tcompcurv and Trecon stand for the time of recovering
curvatures from statistical patch models and reconstructing mesh from curvatures.

(a) Toy model. (b) Mechanics model. (c) Wooden House model.

(d) Toy model with detail transferred. (e) Mechanics model with detail transferred. (f) Wooden House model with detail trans-
ferred.

Figure 5. Geometry detail transfer based on statistical patch models. First row: original meshes. Second row: meshes with transferred
detail.

6. Future work

We have described a method for compactly representing
3D scanned objects that decomposes the object into a base
form and a small set of detailed patches. This representation
is useful for representing natural objects for graphics ap-
plications in which capturing characteristic features, rather
than precise dimensions, is desirable. The proposed statis-
tical model can be used to transfer geometric features and
thus involve in authoring novel objects, which makes it dif-
ferent than traditional mesh compression methods and con-
ventional detail-enriching rendering techniques based on
surface maps.

The main value of this work is that it introduces a num-
ber of promising avenues for future research in the area of
using 3D scanned data in authoring systems for objects in
computer graphics. These directions include:

• Automatically determining the optimal patch size and
number of clusters for the surface details. An obvious
starting point for this is a brute force approach that tries
multiple scales and selects the scale that best exploits
redundancy.

• Developing a statistical patch description that accounts
for correlations across dimensions.

• Finding the best method for determining the matching
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of detailed patch to mesh vertex for newly authored
shapes.

• Finding a method for statistically characterizing the
base shape as well as the detailed features by analyzing
a collection of similar scanned objects.

• Finding a method that includes variations of re-
flectance (i.e. spatial varying bidirectional reflectance
distribution functions) that are correlated to geometric
detail variations.

The success of research along these lines will facilitate
the efficient modeling of complex natural scenes by elim-
inating manual parameter tuning and storing the results of
modeling in a compact form.
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[19] T. Möller, N. Hoffman, and E. Haines. Real-time rendering.
AK Peters, Ltd., 2008.

[20] F. K. Musgrave, C. E. Kolb, and R. S. Mace. The synthe-
sis and rendering of eroded fractal terrains. In SIGGRAPH
’89: Proceedings of the 16th annual conference on Com-
puter graphics and interactive techniques, pages 41–50, New
York, NY, USA, 1989. ACM.

[21] K. Perlin. An image synthesizer. In SIGGRAPH ’85: Pro-
ceedings of the 12th annual conference on Computer graph-
ics and interactive techniques, pages 287–296, New York,
NY, USA, 1985. ACM.

[22] E. Reinhard, P. Shirley, M. Ashikhmin, and T. Troscianko.
Second order image statistics in computer graphics. In APGV
’04: Proceedings of the 1st Symposium on Applied percep-
tion in graphics and visualization, pages 99–106, New York,
NY, USA, 2004. ACM.

[23] M. Varma and A. Zisserman. A statistical approach to texture
classification from single images. International Journal of
Computer Vision, 62(1):61–81, 2005.

[24] K. Zhou, X. Huang, X. Wang, Y. Tong, M. Desbrun, B. Guo,
and H.-Y. Shum. Mesh quilting for geometric texture syn-
thesis. ACM Trans. Graph., 25(3):690–697, 2006.

1800


