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ABSTRACT

We propose a steganalytic algorithm for watermarks embed-
ded by Cho et al.’s mean-based algorithm [1]. The main ob-
servation is that while in a clean model the means of Cho et
al.’s normalized histogram bins are expected to follow a Gaus-
sian distribution, in a marked model their distribution will be
bimodal. The proposed algorithm estimates the number of
bins through an exhaustive search and then the presence of
a watermark is decided by a tailor made normality test. We
also propose a modification of Cho et al.’s algorithm which
is more resistant to the steganalytic attack and offers an im-
proved robustness/capacity trade-off.

Index Terms— Polygonal meshes, watermarking, data
embedding, steganalysis

1. INTRODUCTION

A digital watermark is a digital signal embedded into a digi-
tal medium to protect it from unauthorized use or alteration.
Most of the existing methods for embedding invisible water-
marks on 3D models are mostly concerned with the robust-
ness of the watermark, targeting applications such as proof
of ownership and copy control. However, we believe that,
alongside robustness, undetectability should also be a major
concern when measuring the performance of such algorithms.
Contribution: In Section 2, we propose a steganalytic algo-
rithm for detecting the presence of a watermark hidden by
Cho et al.’s mean-based algorithm [1]. To the best of our
knowledge, it is the first specific 3D steganalytic method pro-
posed in the literature and our tests show that it outperforms
the universal algorithm in [2]. The second contribution, de-
scribed in Section 3, is a modification of Cho et al.’s algorithm
which is more resistant against the steganalytic attack. Tests
in Section 4 show that the modified algorithm also improves
the robustness/capacity trade-off. These two contributions in-
troduce to the field a novel approach to the development of 3D
watermarking algorithms, similar to the standard paradigm in
image watermarking. That is, the development of algorithms
should be evaluated through a competitive process between
steganographers and steganalysts.
Limitations: The main limitation of the proposed stegana-
lytic attack is that it has only been tested against the mean-

based Cho et al.’s watermarking and its modification proposed
in Section 3. As we discuss in Section 5, the steganalytic al-
gorithm could possibly be used against other watermarking
methods, however, it might not be straightforward to isolate a
statistic with bimodal distribution on marked models.

1.1. Related Work

In the spatial domain, Yeo et al. [3] propose a fragile water-
marking method which perturbs a vertex ensuring that pre-
defined hash functions have the same value on it. One of
its drawbacks is the causality problem, due to its heavy de-
pendence on the order of traversal of vertices. Lin et al. [4]
address this issue using vertex-order-independent hash func-
tions. To increase robustness, Yu et al. [5] and Cho et al. [1],
instead of inserting the watermark into a single vertex, em-
bed each watermark bit into a group of vertices. Bors [6] uses
a neighborhood localized measure to select the vertices that
give small embedding distortion and watermark these ver-
tices by local geometrical perturbations. Aiming at robust-
ness against mesh editing or pose deformation, Yang et al. [7]
propose a Laplacian coordinates based algorithm. Stegano-
graphic methods include Cayre et al. [8], Wang et al. [9],
Chao et al. [10] and Yang et al. [11]. They achieve high capac-
ity and low distortion, but cannot withstand malicious attacks.

In the frequency domain, Ohbuchi et al. [12] propose a
method based on the spectral analysis by Karni et al. [13]. It
is a non-blind method and thus requires the original mesh dur-
ing watermark extraction. Using an edge collapse based mul-
tiresolution decomposition, Praun et al. [14] propose a robust,
non-blind watermarking method. Kanai et al. [15] propose a
non-blind method for semiregular meshes based on the mod-
ification of wavelet coefficients, while Uccheddu et al. [16]
extend this approach to be a blind one.

The area of steganalysis has been primarily developed on
images. Fridrich et al. [17] and Ker [18] propose methods
specific for the detection of LSB replacement. Farid [19] pro-
poses a universal approach which uses a wavelet-like decom-
position to build higher-order statistical models of natural im-
ages. Farid’s method has been extended in [2] to 3D meshes,
which will be used as a benchmark for our approach. Other
universal steganalytic approaches for images include Xuan et
al. [20], Wang et al. [21] and Lie et al. [22].



2. STEGANALYTIC ALGORITHM

Cho et al.’s mean based algorithm works in the spherical co-
ordinate system. First, a K bin histogram of the radial coor-
dinates is computed and each bin is separately normalised in
the interval [0,1]. If B′k = {ρk,j : j = 1, 2, 3, ...} is the k-th
(1 ≤ k ≤ K) bin of the normalised radial coordinates ρk,j , a
-1 (+1) bit is embedded in that bin by perturbing the vertices
such that the mean value m̄k

m̄k =
1

|B′k|
∑
j

ρk,j (1)

is smaller (greater) than 0.5. Here, | · | stands for the number
of the elements of a set.

Our steganalytic algorithm is based on the observation
that embedding will result in a 2-clustering of the set of the
mean values

M = {m̄k : 1 ≤ k ≤ K} (2)

see Fig. 1. The main challenge is finding K, which is done
by an exhaustive search through all possible values. For each
K, we classify the elements of M into two clusters using a
standard clustering algorithm fitting the data with a mixture of
two GaussiansN (µK,i, σ

2
K,i), i = 1, 2. IfC and C̃ denote the

resulting two clusters, we measure the degree of separation
between C and C̃ as the Bhattacharyya distance [23] DK of
the two Gaussians and estimate K by

K ′ = arg max
K

{DK : K ∈ [Kmin, Kmax],K ∈ N} (3)

subject to
abs (|C| − |C̃|)/K ′ ≤ ε. (4)

Kmin and Kmax define the range of K we would like to con-
sider; we fix Kmin = 30 and Kmax = 500.

The rationale behind the constraint of Eq. 4 is the assump-
tion that the watermark bits follow a uniform random distribu-
tion, and hence we expect |C| ≈ |C̃|. Without the constraint,
the distance maximization might return a pair consisting of
a small cluster containing a few outliers and a large cluster
with all the other values. ε in Eq. 4 is a user-specified con-
stant; here ε = 0.15.

2.1. Normality Test

After obtaining K ′, we need to decide whether the mesh has
been watermarked or not. We use a normality test, deciding
whether M can be modeled by a single Gaussian, in which
case the mesh is clean. Otherwise, we assume that the dis-
tribution is bimodal and the mesh has been marked. While
standard normality tests exist, here we need a test specifically
designed for the extreme cases we deal with. Indeed, since
K ′ is selected for making the distribution of M as much as
possible bimodal, a less sharp test may reject normality even
in unmarked meshes.
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Fig. 1. Scatter plot of the mean values {m̄k : 1 ≤ k ≤ K}
for the clean Bunny with K = 200 bins (left), and the marked
Bunny with correct estimation K ′ = 200 bins.

We use Q-Q plots, plotting the quantiles of two distribu-
tions against each other. The first distribution is the sample
M, while the second is the standardized normal distribution.
If two distributions are linearly related, here ifM is linearly
related to the normal distribution, the points in the Q-Q plot
are nicely modeled by the reference line [24]

y = σ · x+ µ

where µ and σ are the mean and the standard deviation ofM.
We check if the reference line is a good model of the

points of the Q-Q plot by comparing it with the least square
linear fit of these points. If the angle θ of the two lines is
above a threshold θT , we assume that the reference line is not
a good model of the Q-Q plot, and henceM is not Gaussian
and the mesh is marked. Fig. 2 shows the Q-Q plots, the ref-
erence line and the least square linear fit for the clean and a
marked Rabbit model. Notice that for reducing the impact of
outliers inM, we compute the least square linear fit from the
points in the range [-0.5, 0.5] of the normal distribution in the
Q-Q plot, the gray area in Fig. 2 (left and middle).

We have also experimented with the most standard ap-
proach of applying a t-test on the hypothesis that C and C̃
are independent random samples from normal distributions
with equal means. The rejection of the hypothesis of equal
means would imply a marked model. However, the results
were worse than those from the above tailor-made normality
test and we also noticed that one had to use extreme values
for the confidence α, e.g., values in the order of α ≈ 10−30,
raising numerical stability concerns.

3. MODIFIED WATERMARKING ALGORITHM

In a bid to increase the robustness of Cho et al.’s algorithm [1]
we propose two modifications. First, in the modified algo-
rithm the origin O of the spherical coordinate system is not
the barycenter of the vertex set. Instead, we project the ver-
tices onto their principal axis and computeO as the barycenter
of the vertices that are projected on that half of the principal
axis where the most vertex projections lie. The purpose of
shifting O away from the barycenter is to increase the vari-
ance in the set of radial coordinates.



The second and most important change is that we embed
the message bits by altering the histogram of the radial coor-
dinates (the original method leaves the histogram invariant).
While Cho et al.’s approach uses one bin to carry a watermark
bit, our method utilizes two bins to deliver a bit. To embed a
watermark bit wi ∈ {−1,+1}, we take two neighboring bins
of the histogram and possibly transfer some elements from
one bin to another. The main idea is that the value of wi will
depend on whether Bk is shorter or taller than Bk+1, that is,
on the sign of |Bk| − |Bk+1|.

Starting from the second bin B2, we arrange adjacent bins
into pairs (B2,B3), (B4,B5), . . . and hide a watermark bit
into each embeddable pair. A pair is embeddable if

|Bk|+ |Bk+1| ≥ 1 (5)

Notice that no watermark bits are carried by the bins B1 and
BK . That means that the end vertices on the principal axis do
not move during embedding, increasing the robustness under
blind extraction. If K is odd, the bin pairing process requires
to exclude one more bin; here BK−1.

A watermark bit wi is embedded in an embeddable pair
(Bk,Bk+1) by increasing some radial coordinates in Bk, or
decreasing some in Bk+1. To insert wi = −1, we increase the
values of the nmov largest elements ρi of Bk, pushing them
into Bk+1 through

ρ′i = ρk+1
min +

∆ρ

arg min
n∈N,n≥3

{n : ρk+1
min + ∆ρ/n < ρk+1

max}
(6)

where ρ′i is the new radial coordinate, ρk+1
min and ρk+1

max are the
minimum and the maximum in Bk+1 and

∆ρ = (ρmax − ρmin)/K (7)

is the range size of each bin. To increase robustness, the de-
nominator of the fraction in Eq. 6 is chosen among a set of
possible candidates such that ρ′i is inside the range of the ex-
isting elements of Bk+1, that is, ρk+1

min < ρ′i < ρk+1
max, and it is

as near to ρk+1
max as possible. Notice that the choice of moving

the largest elements of Bk into Bk+1 also helps keeping the
embedding distortion to a minimum.

The robustness and distortion trade-off is controlled by a
user specified integer threshold nthr ≥ 1. We move elements
from Bk into Bk+1 until, if possible,

|B′k+1| − |B′k| = nthr (8)

We separate the following three cases:
Case 1: If |Bk+1| − |Bk| ≥ nthr, then nmov = 0, meaning no
alteration is required.
Case 2: Else if |Bk| + |Bk+1| < nthr, then nmov = |Bk|,
meaning all the elements in Bk are transferred into Bk+1.
Case 3: Else if |Bk|+ |Bk+1| >= nthr, then

nmov =
⌈
(|Bk| − |Bk+1|+ nthr)/2

⌉
(9)

Table 1. Comparison between the universal steganalysis
in [2] applied on Cho’s et al. (first row), the proposed specific
steganalysis applied on Cho’s et al. (second row) and the pro-
posed steganalytic algorithm using the statistic |Bk| − |Bk+1|
applied on the proposed modification of Cho’s et al. (third
row). The fourth column shows the accuracy in the estima-
tion of K and the fifth the steganalytic accuracy.

Method #Bits #Marked 3D Accy of K Accy
[2] 64 359 N/A 80.93%

Cho’s 64 443 96.84% 98.52%
100 386 96.63% 97.91%

Ours 64 439 87.70% 70.82%
100 426 92.96% 73.78%

The embedding process for wi = +1 is analogous. It is
a straightforward but tedious exercise to show that the above
process is reversible and blind extraction of the watermark is
possible. The details are omitted.

4. EXPERIMENTAL RESULTS

We validated the steganalytic algorithm on a test set consist-
ing of 445 clean models, mostly from Princeton’s University
repository [25], and their marked counterparts. As some 3D
meshes are unable to carry the watermark for some values of
K, we might have different numbers of marked models for
different K’s.

Table 1 shows that the proposed steganalysis outperforms
the universal steganalytic algorithm proposed in [2], while
the proposed modified method is more robust. When test-
ing the modified method, we not only applied the steganalytic
attack on the distribution of the means m̄k, where it obvi-
ously fails (see red curve of Fig. 2 (right)), but also on the
differences |Bk| − |Bk+1| (see green curve of Fig. 2 (right)),
trying to detect a possible bimodality on their distribution. Ta-
ble 1 shows that while by targeting the |Bk| − |Bk+1| statistic
we can achieve a high accuracy rate for the estimation of K,
however, the actual rate of steganalytic success is significantly
lower. The reason is that the distribution of |Bk|−|Bk+1| does
not follow the single Gaussian assumption as well as that of
m̄k.

Fig. 2 (right) plots the detection accuracy with respect to
the angle threshold θT , measured in degrees, for Cho et al.’s
and our watermarking methods that embed 100 bits into the
Rabbit model. The proposed steganalytic method success-
fully detects the existence of watermark with an accuracy of
up to 98% at θT = 2.8◦ for Cho et al.’s watermarking and
73% at θT = 1.5◦ for the modified method. The figure also
implies that we can set the threshold θT to any value within
[2, 3] for Cho et al.’s watermarking and to any value within
[1.3, 1.7] for our approach.

Next, we compare the distortion/capacity performance of
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Fig. 2. Q-Q plot ofM for the clean Rabbit (left) and the marked by Cho et al.’s with 100 bins (middle). Plot of the detection
accuracy with respect to the angle threshold θT (in degrees) for Cho et al.’s and the modified method with 100 bits.
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Fig. 3. Embedding distortion measured as the RMSE (left)
and the Hausdorff distance (right) when embedding 100, 150
and 200 watermark bits.

the modified algorithm against the original Cho et al.’s algo-
rithm. Using the Metro tool [26], we measure distortion by
the root mean square error (RMSE) and the Hausdorff dis-
tance between the clean and the marked mesh. Fig. 3 shows
that the performance of the modification is comparable to that
of the original.

Finally, we compare the robustness against malicious at-
tacks using the standard measure of the correlation coefficient

C(w,w′) =

∑
i(wi − w̄) · (w′i − w̄′)√∑

i(wi − w̄)2 ·∑i(w
′
i − w̄′)2

(10)

where w̄ and w̄′ are the means of the inserted watermark se-
quence w and the extracted sequence w′, respectively. Fol-
lowing the 3D mesh watermarking benchmark in [27], we
fixed K = 400 and carried out attacks with varying strength.
Noise Addition: Random noise was added to all vertex coor-
dinates (xi, yi, zi) according to (resp. yi, zi)

x′i = xi + ai · d̄ (11)

where d̄ is the average radial coordinate, and ai is a uniformly
random number in the interval [−A,A]. We tested on four
different levels of noise : A = 0.05%, 0.10%, 0.25%, 0.50%.
Smoothing: We applied to the marked models 10, 30 and 50
iterations of Laplacian smoothing [28], fixing the deformation
factor at λ = 0.02.
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Fig. 4. Comparison between original and modified Cho et
al.’s methods. Noise addition (left) and Laplacian smoothing
attack (right).

Fig. 4 shows that the modified method is more robust un-
der noise addition and smoothing attacks. In all our experi-
ments, in the original Cho et al.’s method we used the param-
eter settings recommended in [1].

5. DISCUSSION AND FUTURE WORK

While the proposed steganalytic algorithm was specifically
designed to target Cho et al.’s algorithm [1], the main idea
could possibly be applied on several other algorithms that em-
bed each watermark bit by altering a specific statistic of the
model. For example, a steganalytic attack on the proposed
modified algorithm targeting the statistic, |Bk|−|Bk+1|, gives
reasonable results. Other algorithms where such a stegana-
lytic attack might be successful include the variance-based
watermarking by Cho et al. and the geodesic distance-based
watermarking by Luo and Bors [29]. In the future, we plan to
adapt the steganalytic algorithm to these cases.

The proposed modification of Cho et al.’s algorithm uses
a discrete statistic, here the difference in the height of adja-
cent bins, rather than a continuous statistic such as the mean
of the values in a bin. In the future, we plan to propose dis-
crete counterparts for algorithms such as the one in [29], and
check if they also improve the robustness/distortion trade-off,
the robustness under steganalytic attacks, and the robustness
under malicious watermark removal attacks.
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