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Fig. 1. 3DGH: Our method generates 3D head representations that can be rendered at 360◦ with photorealistic rendering quality and high-fidelity geometry
based on 3D Gaussian Splatting. The generated heads include composable hair and face components, enabling 3D hairstyle editing with multi-view consistency.
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We present 3DGH, an unconditional generative model for 3D human heads
with composable hair and face components. Unlike previous work that
entangles the modeling of hair and face, we propose to separate them using
a novel data representation with template-based 3D Gaussian Splatting, in
which deformable hair geometry is introduced to capture the geometric
variations across different hairstyles. Based on this data representation, we
design a 3DGAN-based architecturewith dual generators and employ a cross-
attention mechanism to model the inherent correlation between hair and
face. The model is trained on synthetic renderings using carefully designed
objectives to stabilize training and facilitate hair-face separation. We conduct
extensive experiments to validate the design choice of 3DGH, and evaluate
it both qualitatively and quantitatively by comparing with several state-of-
the-art 3D GAN methods, demonstrating its effectiveness in unconditional
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full-head image synthesis and composable 3D hairstyle editing. More details
will be available on our project page: https://c-he.github.io/projects/3dgh/.

CCS Concepts: • Computing methodologies → Shape representations;
Appearance and texture representations.

Additional Key Words and Phrases: Facial Modeling, Hair Modeling, Gener-
ative 3D Modeling
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1 Introduction
The generation of high-quality 3D human heads has broad applica-
tions in digital avatars, telepresence, immersive gaming, and so on.
Recently, many generative models have been proposed to facilitate
3D head generation by integrating geometry-aware representations
with well-studied 2D image generative models [An et al. 2023; Chan
et al. 2022; Kirschstein et al. 2024; Li et al. 2024].

Despite their advancements, existing methods often overlook the
inherent diversity difference between hair and face, where faces of
different identities still share a similarity in facial features while
hairstyles are significantly more diverse. As a result, most prior
3D head generative models, which entangle the modeling of hair
and face, are unsuitable for finer-grained editing tasks such as hair
transfer. Although some approaches enable editability for 2D im-
ages [Nikolaev et al. 2024; Richardson et al. 2021] or geometry-aware
representations like tri-plane [Gao et al. 2023; Sun et al. 2022], they
either suffer from view inconsistency in 3D applications or are inade-
quate for modeling 3D hair, particularly in back-of-head regions. To
address these limitations, we introduce 3DGH, a generative model
for 3D full-head synthesis that supports composable hair and face
components.

To train a generative model that supports compositionality, there
are two key issues we need to address: (1) first, we need to en-
sure a clear separation between hair and face to disentangle these
components, and meanwhile, (2) we need to respect their inherent
correlation, as observed in real-world patterns where male faces
are predominantly associated with short hairstyles, while female
faces typically feature medium to long hairstyles. To tackle these
challenges, we propose a novel data representation with template-
based 3D Gaussian Splatting (3DGS), in which two separate mesh
templates are involved to model the overall structure of hair and
face with 3D Gaussians spawned on their 2D 𝑢𝑣 texture maps. To
capture the geometric variations among different hairstyles, we
make the hair geometry itself deformable through PCA-based linear
blend shapes fitted from multi-view facial capture data. This data
representation then drives the design of our network architecture,
which employs dual branches of StyleGAN2 [Karras et al. 2020]
generators to independently generate hair and face Gaussians. A
cross-attention mechanism [Vaswani et al. 2017] is introduced to
carefully model the inherent correlation between hair and face, en-
suring coherent and realistic outputs. The model is trained using

a comprehensive objective that combines adversarial loss, recon-
struction terms, and regularization terms, all carefully designed to
stabilize training and facilitate effective hair-face separation.

We train ourmodel using synthetic renderings fromPanoHead [An
et al. 2023]. After training on 25𝑚 images, we obtain a 3D generative
model capable of producing diverse 3D heads with composable hair
and face components. We evaluate the model both qualitatively and
quantitatively, demonstrating its effectiveness in unconditional full-
head image synthesis and composable 3D hairstyle editing through
comparisons with several state-of-the-art 3D GAN methods.

In summary, our contributions are as follows:
• We propose 3DGH, a Gaussian-based 3D GAN for human
heads that supports composable hair and face components.

• We introduce a novel data representation that utilizes sepa-
rate template meshes for hair and face, with deformable hair
geometry to capture diverse hairstyles.

• We design network architectures and training objectives to
model hair-face separation and correlation, demonstrating
their effectiveness through qualitative and quantitative com-
parisons with state-of-the-art 3D GAN methods.

2 Related Work
In this section, we review prior work in 3D head generative mod-
els, conditional image editing methods, and 3D hair modeling ap-
proaches.

2.1 3D Generative Adversarial Networks
3D Generative Adversarial Networks (GANs) are able to leverage
adversarial training to develop generative models for 3D repre-
sentations from 2D image collections. Early approaches primarily
employed implicit 3D representations, such as NeRF [Mildenhall
et al. 2020], to render either raw pixels [Chan et al. 2021; Schwarz
et al. 2020] or features subsequently decoded by a CNN-based neural
renderer [Niemeyer and Geiger 2021; Xue et al. 2022]. However, the
high computational cost for volume rendering posed challenges for
training high-resolution GANs. To address these limitations, more
recent works have adapted successful 2D GAN architectures to gen-
erate compact intermediate representations, which can then be lifted
to 3D [Chan et al. 2022; Gu et al. 2021; Or-El et al. 2022]. Among these
approaches, the tri-plane representation introduced in EG3D [Chan
et al. 2022] has proven to be the most effective for generating di-
verse and realistic geometry-aware portrait images. Building on this
foundation, subsequent works, such as PanoHead [An et al. 2023]
and SphereHead [Li et al. 2024], extend the tri-plane representation
for full-head synthesis including back-view head images.
Despite the use of compact intermediate representations, the

aforementioned methods typically rely on a 2D super-resolution
network to enhance efficiency during training and inference, which
may introduce unwanted artifacts in the form of 3D inconsistencies
as well as low-resolution geometry. 3D Gaussian Splatting (3DGS)
by Kerbl et al. [2023] provided an alternative direction by utilizing
an explicit representation, where a set of 3D Gaussians is optimized
frommulti-view images using volume splatting [Zwicker et al. 2001].
Although the original 3DGS representation is unstructured, subse-
quent works such as Gaussian Shell Maps [Abdal et al. 2024] and
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GGHead [Kirschstein et al. 2024] have demonstrated strategies to
rig Gaussians in an organized manner relative to an underlying
template mesh, thereby enabling the training of Gaussian-based
3D GANs for human body and head generations. In this work, we
aim at training a similar Gaussian-based 3D GAN for human head
generation, while focusing on disentangling the generation of hair
and face to enable a composable model through the introduction
of novel data representations, network architectures, and training
strategies.

2.2 Conditional Image Editing
Beyond unconditional generation, GANs are extensively employed
to learn mappings from a reference in a source domain to a target do-
main. Examples include translating semantic masks [Park et al. 2019;
Zhu et al. 2020] or hand-drawn sketches [Chen et al. 2020] into pho-
torealistic images. A common approach involves using a pre-trained
StyleGAN [Karras et al. 2019] generator as a decoder while train-
ing customized encoders for different input modalities [Richardson
et al. 2021]. Specifically for hairstyle editing, works like [Nikolaev
et al. 2024; Wei et al. 2022, 2023; Zhu et al. 2021] take this approach
to train customized encoders to map the input conditions to the
latent space of StyleGAN, thereby achieving hairstyle editing with
conditions such as reference images and text. While these methods
achieve impressive results in 2D image editing, they often struggle
to edit geometry-aware content due to the lack of mechanisms for
preserving multi-view consistency in the synthesized outputs. To
address this limitation, geometry-aware editing approaches such as
IDE-3D [Sun et al. 2022] and SketchFaceNeRF [Gao et al. 2023] train
3D GANs from scratch with additional intermediate 3D represen-
tations for conditions such as semantic masks or sketches, thereby
ensuring multi-view consistency during editing. A concurrent work
by Bilecen et al. [2024] solves a similar 3D hairstyle editing problem
through tri-plane editing. In this work, we adopt a similar approach
by rendering hair-face segmentation as additional supervision. Fur-
thermore, we carefully model the correlation between hair and face
to enhance editing fidelity while respecting plausible conditional
hairstyle distributions observed in the real world.

2.3 3D Hair Modeling
Given the complexity and variability of hair, high-quality 3D hair
modeling has remained a persistent challenge for decades, as sum-
marized in the comprehensive survey by Ward et al. [2007]. To
capture high-quality 3D hair models, existing methods typically
require high-end capture systems [Jakob et al. 2009; Paris et al. 2004;
Xu et al. 2014] or even CT scanners [Shen et al. 2023] to fully recover
strand-level details, leaving them inaccessible to most users. With
the availability of synthetic 3D hair datasets [Hu et al. 2015], deep
learning-based methods have emerged to regress 3D hair models
from single-view [Chai et al. 2016; Saito et al. 2018; Wu et al. 2022;
Zheng et al. 2023; Zhou et al. 2018] or sparse-view [Zhang et al. 2017]
image input, thereby reducing the hardware requirement for 3D
hair reconstruction. However, the performance of these data-driven
methods is inherently constrained by the quality of their synthetic
training datasets, which often lack realism and fail to represent intri-
cate hairstyles, such as afro-textured hair. Recently, more advanced

hair capture techniques have been proposed to jointly reconstruct
hair geometry and appearance by incorporating neural volumet-
ric primitives [Wang et al. 2022] or strand-aligned Gaussians [Luo
et al. 2024; Zakharov et al. 2024]. While these methods produce
impressive results, creating a large-scale 3D hair dataset with them
remains tedious. Consequently, current hair generative models [He
et al. 2025; Sklyarova et al. 2024; Zhou et al. 2023] continue to rely on
synthetic data with augmentations and primarily focus on modeling
hair geometry without appearance. In this work, we introduce a hair
generative model trained on 2D image collections, capable of mod-
eling both hair geometry and appearance with our deformable hair
geometry representation and 3DGS-based rendering framework.

3 Methodology
An overview of our method is presented in Fig. 2, which integrates
3D Gaussian Splatting with the well-studied 3D GAN formulation.
Our approach comprises three key components: a novel data rep-
resentation that incorporates 3DGS and deformable hair geometry
(Section 3.1), a newly designed network architecture that simulta-
neously models hair-face separation and correlation (Section 3.2),
and training objectives specifically crafted to stabilize GAN training
and enhance hair-face separation (Section 3.3).

3.1 Data Representation
3.1.1 Template-Based 3D Gaussian Splatting. Since the emergence
of 3D Gaussian Splatting [Kerbl et al. 2023], it has shown outstand-
ing expressivity in 3D scene representation, in which the scene is
represented as a collection of 3D Gaussians, with each Gaussian
denoted as g𝑖 = {p𝑖 , q𝑖 , s𝑖 , c𝑖 , 𝑜𝑖 } ∈ R14, characterized by a set of
parameters. These parameters include its center position p𝑖 ∈ R3,
rotation parameterized by a unit quaternion q𝑖 ∈ R4, scale factor
s𝑖 ∈ R3 along each axis, color c𝑖 ∈ R3, and opacity value 𝑜𝑖 ∈ R.
This collection of 3D Gaussians can then be efficiently rendered
through its differentiable tile-based rasterizer given the camera pose
Π.

Considering the highly unstructured nature of the original 3DGS,
we follow previous works [Abdal et al. 2024; Kirschstein et al. 2024;
Saito et al. 2024] and associate each 3D Gaussian with a template
mesh with corresponding 𝑢𝑣 layout. In this way, 3D Gaussians are
represented as a 2D texture map T ∈ R256×256×14, where each texel
stores the parameters for a single 3D Gaussian primitive. In our
3D head representation, we adopt two different meshes and texture
maps for hair and face, respectively, resulting in ∼131𝐾 Gaussians
in total for the final rendering.

3.1.2 Deformable Hair Geometry. Even with our template-based
3DGS representation, there is an inherent difference between hair
and face remaining unsolved, that is, hair contains much more
geometric variation than different faces, which always share some
commonalities among facial features such as eyes and mouth. For
hair, there are many different hairstyles in the real world, ranging
from short to long, fluffy to flat, making it hard to find a single
template mesh to cover all these variations. To solve this problem,
we learn a hair geometry prior that allows to produce deformable
hair geometry to fit different hairstyles.
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Fig. 2. Overview of 3DGH, which takes a randomly sampled Gaussian noise vector z and camera pose Π as input and outputs disentangled 3D head and hair
representations, which are modeled as 3D Gaussians spawned on the 2D 𝑢𝑣 textures of the underlying 3D meshes. The generated 3D Gaussians are rasterized
and supervised by the discriminator, with additional reconstruction supervision provided by inferring PanoHead [An et al. 2023] using the same noise z and
camera pose Π. In 3DGH, the hair geometric variation is modeled with a separate geometry mapping network 𝑓geom that produces PCA coefficients for our
pre-computed linear blend shapes, and the hair-face correlation is modeled using cross-attention layers to integrate the information from wface.

To learn the prior, we first fit hair geometries from multi-view
facial capture data that are similar to theMultiface dataset [Wuu et al.
2022], which provides calibrated camera parameters and semantic
segmentations for each captured image. Given a template hair mesh,
we formulate its deformation as an optimization problem, in which
we differentiably render the segmentation of the deformed hair
mesh using DRTK [Pidhorskyi et al. 2024], and compute the 𝐿1 loss
over the provided calibration. To suppress artifacts such as flipped
and folded faces during deformation, we adopt an idea similar to
Neural Jacobian Fields [Aigerman et al. 2022], where we optimize
for Jacobians J ∈ R𝐹×3×3 (𝐹 refers to the number of faces of the
template mesh) and centroid translation t ∈ R3 of the template
mesh, rather than vertex offsets directly. Vertex positions can be
computed efficiently with a differentiable Poisson solver, and this
process can thus be formally defined as:

J∗, t∗ := arg min
J,t

∥R
(
PoissonSolve(J) + t;Π

)
− Iseg∥1, (1)

whereR(·;Π) is the differentiable rendering operator of DRTK given
the camera pose Π, PoissonSolve(·) is the differentiable Poisson
solver in Neural Jacobian Fields, and Iseg is the pre-calibrated ground
truth segmentation. Our experiments show that this optimization
process converges within 500 iterations, and in Fig. 3 we visualize
10 hair meshes fitted from this process.

In total, we collect 283 different hair meshes, and then learn
their prior using the conventional PCA-based methods in digital
humans [Blanz and Vetter 1999; Loper et al. 2015]. Specifically, we
solve a set of linear blend shapes by performing PCA on the nor-
malized hair meshes, and different deformed hair meshes can thus

Fig. 3. Examples of hair meshes fitted by our algorithm. Since all examples
are deformed from the same template, they share a consistent topology, as
illustrated by their wireframe visualization.

be obtained from the linear functionM( ®𝜃 ):

M( ®𝜃 ;X) = M̄ + 𝜎
| ®𝜃 |∑︁
𝑛=1

®𝜃𝑛X𝑛, (2)

where ®𝜃 = [𝜃1, . . . , 𝜃 | ®𝜃 | ]
⊤ is a vector of blend shape coefficients,

and X = [X1, . . . ,X | ®𝜃 | ]
⊤ ∈ R | ®𝜃 |×3𝑉 forms a matrix of orthogonal

principal components of shape displacements, with 𝑉 referring to
the number of vertices of the template mesh, and M̄ ∈ R3𝑉 and
𝜎 ∈ R denote the mean shape and standard variation computed
from the original fitted hair meshes. We set the number of blend
shape coefficients | ®𝜃 | = 32, which ensures that the deformed mesh
is smooth while still covering enough variations.
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3.2 Network Architecture
To obtain enough training data of frontal and back-of-head images
with accurate camera poses, we adopt PanoHead [An et al. 2023] as
our training data generator and train our generativemodel following
the scheme of StyleGAN2 [Karras et al. 2020]. Formally, given a
randomly sampled latent code z ∈ R512 and camera pose Π ∈ R25,
they are first passed to PanoHead to obtain a rendered RGB image
Irgb ∈ R512×512×3, which is later segmented and parsed to obtain the
foreground mask Imask ∈ R512×512 and the hair-face segmentation
map Iseg ∈ R512×512 using [Lin et al. 2021; Zheng et al. 2022]. These
images, i.e., Irgb, Imask, Iseg, serve as supervision signals to train our
model.

3.2.1 Dual-Branch 3D GAN. As illustrated in Fig. 2, we design two
separate branches to handle the generation of hair and face respec-
tively. Given the same latent code z and camera pose Π, the mapping
network 𝑓 : Z ↦→ W is first introduced to map them to the interme-
diate latent space, denoted aswhair andwface. For hair, an additional
geometry mapping network 𝑓geom : W ↦→ ®𝜃 is designed, which
maps the latent code whair to proper blend shape coefficients that
can represent the global shape of the hairstyle. These intermediate
latent codes are then fed into two separate StyleGAN generators
Ghair and Gface, yielding two textures Thair and Tface that store Gauss-
ian parameters on each texel. We spawn 3D Gaussians from these
textures and associate them with the underlying template mesh,
combining and rendering them together to obtain the rendered RGB
image Îrgb and mask Îmask from the provided camera pose. We use
a similar dual discrimination method as EG3D [Chan et al. 2022],
where we concatenate the rendered RGB and mask images and feed
them into the discriminator with the camera pose Π. Aligning with
the findings of Mimic3D [Chen et al. 2023], this adversarial training
scheme helps increase diversity and maintain high-frequency details
in our generated outputs.

3.2.2 Hair-Face Correlation. In reality, the distributions of plausible
faces and hairstyles are correlated. For instance, hairstyles often
correlate with gender and ethnicity. To encourage our model to
learn these correlations, which are commonly observed in the real
world, we use cross-attention layers [Vaswani et al. 2017] to inject
wface into each synthesis block of Ghair, thereby influencing the hair
generation process at different scales. Specifically, the intermediate
feature map y𝑙+1 generated at layer 𝑙 + 1 is computed as:

x𝑙 = Conv(x𝑙 )

x𝑙+1 = x𝑙 + CrossAttention(Q = x𝑙 ,K = V = wface)

y𝑙+1 = Upsample(y𝑙 ) + ToRGB(x𝑙+1)
(3)

In Eq. (3), x𝑙 is the input feature map for convolution from layer 𝑙 ,
Conv(·) is the modulated convolution layers inside synthesis blocks,
Upsample(·) is the spatial upsampling operator to upscale the previ-
ous feature map y𝑙 to match the spatial resolution of x𝑙+1, ToRGB(·)
is the convolution layer that adjusts the number of channels in the
convolved feature map x𝑙+1 to match y𝑙 , and CrossAttention(·, ·)
is the cross-attention layers we newly introduced compared to the
original synthesis blocks in StyleGAN2. The diagram for our hair-
face correlation module is provided in Fig. 4.
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Fig. 4. Diagram of our hair-face correlation module, which utilizes cross-
attention layers to inject wface into each synthesis block of StyleGAN2.

Inspired by classifier-free guidance [Ho and Salimans 2022], we
design a similar technique by randomly dropping the condition
wface (replacing it with all-zero vectors ∅) during training with
a probability of 10%. Then in the inference stage, we blend the
conditional feature map x𝑙 and unconditional feature map x𝑙∅ with
the CFG factor 𝜔 :

x̃𝑙 = 𝜔x𝑙 + (1 − 𝜔)x𝑙∅, (4)
thereby allowing for further control over the hair-face correlation
with the CFG factor 𝜔 .

3.3 3D GAN Training
As PanoHead gives us direct supervision during training, our final
training objective consists of adversarial loss, reconstruction losses
on rendered images, and several regularization terms to stabilize
the training and improve the generation quality.

Adversarial Loss. Following EG3D [Chan et al. 2022], we incorpo-
rate the standard non-saturating GAN loss Ladv [Goodfellow et al.
2014] with 𝑅1 gradient regularization [Mescheder et al. 2018] on
both the RGB and mask images, where the regularization strengths
are set to 1 for both of them.

RGB and Mask Loss. From Gaussian Splatting we can obtain the
rendered RGB image Îrgb and mask Îmask, on which we compute the
𝐿1 loss to measure their reconstruction quality. These loss terms
can be expressed as:

Lrgb = ∥ Îrgb − Irgb∥1, Lmask = ∥ Îmask − Imask∥1 . (5)

Segmentation Loss. To encourage a clear separation between hair
and face, we further assign different one-hot labels to Gaussians
spawned from Thair and Tface ([0, 0, 1] for hair and [0, 1, 0] for face,
[1, 0, 0] is left for background), which will be used to render an
additional segmentation map Îseg ∈ R512×512×3 with other Gauss-
ian parameters. To ensure that the generated hair mesh faithfully
represents the hairstyle in the image, we additionally render the
hair mesh segmentation Îmesh

seg ∈ R512×512 with DRTK [Pidhorskyi
et al. 2024] by assigning different scalar values to vertices of the
hair and face meshes (2 for hair and 1 for face, the default value 0 is
for background). These segmentation maps are supervised with the
segmentation map Iseg parsed from Irgb, where the loss terms are
defined as:

Lseg = CrossEntropy(Îseg, Iseg), Lmesh
seg = ∥ Îmesh

seg − Iseg∥1 . (6)
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Note that we use the cross-entropy loss rather than 𝐿1 loss for the
segmentation map Îseg rendered from Gaussian Splatting, as its 𝛼-
blending nature will inevitably change values around the boundary,
thus causing mislabeling issues for pixels on the boundary if their
labels are scalar.

Regularization Terms. As our adversarial training is weakly su-
pervised and 3D Gaussians are quite sensitive to gradient updates
during early training stages, unconstrained training will quickly
lead to divergence or mode collapse with overly large or extremely
small Gaussians in the early stage. Therefore, we apply some regu-
larization terms to stabilize the training. First, based on our hybrid
3DGS representation, the center position p𝑖 of each Gaussian is
defined as the sum of the 3D position v𝑖 on the mesh surface and
the delta position Δp𝑖 decoded from the generated texture maps.
To ensure that all Gaussians stay within a thin layer around the
mesh surface, we first clamp the absolute value of the decoded delta
position Δp𝑖 with a threshold 𝛾 . We use 𝛾 = 40 for face Gaussians,
meaning that they can move at most 40mm away from the surface.
As the hair mesh itself is deformable, we reduce 𝛾 to 20 for hair
Gaussians to make sure that different hairstyles are generated with
different geometries, rather than similar geometries with largely
deviated Gaussians. A regularization term for delta positions is
applied:

Lpos
reg =

∑︁
𝑖

∥Δp𝑖 ∥2, (7)

which encourages all predicted Gaussians to stay close to the mesh
surface. To constrain the scale of Gaussians to stay within a reason-
able range, the most effective regularization term we experimented
with can be defined as:

Lscale
reg =

{
10 × |𝑠𝑖 − 𝑠min | 𝑠𝑖 < 𝑠min

(𝑠𝑖 − 𝑠max)2 𝑠𝑖 > 𝑠max
(8)

It applies different penalties to constrain the Gaussian scaling along
all axes if they are outside of a reasonable range [𝑠min, 𝑠max], where
𝑠min = 0.2 and 𝑠max = 5. Finally, we also apply the 𝑢𝑣 total variation
loss Luv

reg proposed in GGHead [Kirschstein et al. 2024] to prevent
Gaussians in the back from shining through to the front.

Combining all the terms discussed above, the final training objec-
tive is defined as their weighted sum, expressed as:

L = Ladv + 𝜆rgbLrgb + 𝜆maskLmask + 𝜆segLseg + 𝜆mesh
seg Lmesh

seg

+ 𝜆posregL
pos
reg + 𝜆scalereg Lscale

reg + 𝜆uvregLuv
reg

(9)

where we set the weighting factors 𝜆rgb = 10, 𝜆mask = 10, 𝜆seg = 1,
𝜆mesh
seg = 100, 𝜆posreg = 0.1, 𝜆scalereg = 1, and 𝜆uvreg = 1 to balance the
influence of different terms.

4 Experiments
We use multi-view capture data [Saito et al. 2024; Wuu et al. 2022] to
solve the linear blend shapes for our deformable hair geometry, and
we use PanoHead [An et al. 2023] as the portrait image generator to
train our generative model. For details about these datasets, please
refer to Sec. A in supplemental.

4.1 Comparisons
We compare against several competitive baseline methods from the
3D GAN literature. Unless otherwise indicated, all baselines are their
official checkpoints to maintain their original quality. We evaluate
the quality of the generated multi-view images, both quantitatively
and qualitatively.

4.1.1 Qualitative Comparisons. Fig. 5 visually compares the im-
age quality against baselines including EG3D [Chan et al. 2022],
PanoHead [An et al. 2023], SphereHead [Li et al. 2024], and GGHead
[Kirschstein et al. 2024], where EG3D is the pioneering work that
synthesizes high-quality portrait images with the tri-plane represen-
tation and a 2D super-resolution network, PanoHead and Sphere-
Head are two subsequent works that achieve full-head synthesis by
improving the tri-plane representation, and GGHead utilizes a simi-
lar hybrid representation with 3DGS and a template mesh as ours.
All synthesized images contain 5 different views, with yaw angles
ranging from 0◦ to 180◦. While all methods successfully synthesize
realistic frontal-view images, the rendering quality of EG3D and
GGHead deteriorates significantly when rendering from large cam-
era poses or back-view areas, as these methods are not specifically
designed for full-head image synthesis. Compared to SphereHead
and PanoHead, ourmethod achieves comparable visual quality while
providing the additional advantage of compositionality.
To prove the compositionality of our method, we first present

samples generated by our model alongside the rendered hair-face
segmentation maps and mesh normal maps in Fig. 6. Leveraging
our deformable hair geometry, we achieve smooth deformations of
the hair mesh, effectively capturing the overall structure of various
hairstyles. Additionally, the 3D Gaussians associated with the hair
mesh exhibit a clear separation from the face Gaussians and are
capable of representing some strand-level details, thus yielding
hair-face segmentation maps with finer-grained details that are
difficult to obtain from common image segmentation models. More
uncurated samples can be found in Sec. D of our supplemental.

We then evaluate our compositionality through 3D hairstyle edit-
ing, where the 3D hairstyle in the reference sample is transferred to
another one. The qualitative results are provided in Fig. 7, demon-
strating that our approach preserves the reference hairstyle with
high fidelity while producing a natural blending around the hairline.
Both the hair geometry and appearance are transferred through a
simple latent code swap. Note that in 2D hairstyle editing methods,
such as HairFastGAN [Nikolaev et al. 2024], such hairstyle editing
typically requires multiple processing steps and network modules.
Furthermore, our editing results inherently maintain multi-view
consistency, attributed to the 3D nature of our representations.

We finally investigate the impact of our hair-face correlation mod-
eling technique by generating hair-face compositions with varying
levels of the CFG scale factor 𝜔 . As illustrated in Fig. 8, when the
reference face is male, it favors short-length hairstyles to align with
plausible hairstyle distributions observed for this face condition
in real life. Consequently, as 𝜔 increases, the transferred hairstyle
gradually becomes shorter while preserving the overall style of the
reference. This experiment provides strong evidence for the effec-
tiveness of our hair-face correlation module, which introduces an
extra dimension for editing transferred hairstyles while maintaining
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Fig. 5. Qualitative comparison with various 3D GANs. (a) EG3D [Chan et al. 2022] and (b) GGHead [Kirschstein et al. 2024] are not specifically designed for
full-head image synthesis, resulting in significant quality degradation when rendering large-pose or back-view images. (c) SphereHead [Li et al. 2024] and (d)
PanoHead [An et al. 2023] are two 3D GANs tailored for full-head image synthesis. Compared with these methods, our results (e-h) demonstrate comparable
quality while offering the additional advantage of compositionality.

RGB Segmentation Mesh Normal RGB Segmentation Mesh Normal

Fig. 6. Generated samples with corresponding hair-face segmentation and deformed hair geometry. Our method enables smooth deformation of the hair
mesh to represent various hairstyles, while assigning 3D Gaussians to capture strand-level details and appearance.

plausibility – a critical point often overlooked by previous hairstyle
editing methods.

4.1.2 Quantitative Comparisons. We first quantitatively evaluate
our generation quality by measuring the Fréchet Inception Distance
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Original Hairstyle

Edited Hairstyle Reference

Fig. 7. Our method supports 3D hairstyle editing by swapping the hair latent code whair from the reference samples. This editing process transfers both the
hair geometry and appearance, while ensuring multi-view consistency thanks to the inherently 3D nature of our representations.

Reference Face Reference Hair 𝜔 = 0 𝜔 = 0.5 𝜔 = 1

Fig. 8. Analysis of the CFG scale factor 𝜔 , where we present hair-face compositions generated using varying levels of 𝜔 . When 𝜔 is small, the hair-face
correlation has weak influence on the final output, resulting in hairstyles more similar to the reference. As 𝜔 increases, the composition process becomes more
biased toward the face distribution, producing hairstyles that are more contextually appropriate for the given face.

(FID) [Heusel et al. 2017] computed over 50𝑘 real and fake image
samples. Since PanoHead [An et al. 2023] serves as our training data
generator, its renderings are treated as real image samples for the
FID evaluation. In addition to the overall FID (FID-all) computed

on randomly sampled poses, we evaluate generation quality at a
finer granularity by sampling camera poses from different regions.
Specifically, FID-front evaluates facial details using images synthe-
sized from frontal views (|𝑦𝑎𝑤 | < 90◦), while FID-back assesses hair

ACM Trans. Graph., Vol. 44, No. 4, Article 59. Publication date: August 2025.



3DGH: 3D Head Generation with Composable Hair and Face • 59:9

Table 1. Quantitative comparison on different FID metrics.

FID ↓
back front all

Ours 9.86 5.47 6.55

Table 2. Quantitative comparison between our method and other 3D GANs
on multi-view consistency.

EG3D GGHead SphereHead Ours[Chan et al. 2022] [Kirschstein et al. 2024] [Li et al. 2024]
ID ↑ 0.678 0.683 0.581 0.690

details using images synthesized from back views (|𝑦𝑎𝑤 | ≥ 90◦). As
shown in Table 1, all three metrics yield values less than 10, indicat-
ing that the quality of our generated results is still comparable to
that of PanoHead.
We then conduct quantitative comparisons with EG3D [Chan

et al. 2022], SphereHead [Li et al. 2024], and GGHead [Kirschstein
et al. 2024] to evaluate multi-view consistency, in which we mea-
sure the identity similarity score (ID) by calculating the average
Adaface [Kim et al. 2022] cosine similarity between paired images
rendered from different camera poses. As reported in Table 2, our
method achieves the best multi-view consistency, since EG3D and
GGHead struggle for large-pose images and SphereHead involves a
2D super-resolution network that may introduce artifacts.

4.2 Ablation Study
In Table 3, we analyze key design decisions in our method, includ-
ing the choice of supervision on segmentation maps, the use of
deformable hair geometry, and variations in hair-face correlation
modules. To assess the compositionality of our approach, we gener-
ate 50𝑘 samples by randomly swapping the intermediate latent codes
whair and wface, thereby creating novel samples with mismatched
hair and face combinations. We then compute FID for these swapped
samples against the real samples, denoted as FID-swap, to evalu-
ate the realism of the randomly combined hair and face outputs
produced by our model.
In Table 3, the first 3 rows evaluate the impact of our choice of

segmentation supervision. Specifically, Seg. in D refers to concate-
nate the rendered segmentation maps to the input of discriminator
and let it determine whether the segmentation is realistic or not in
an adversarial manner. Meanwhile, w/o Seg. loss denotes setting 𝜆seg
to 0. In these experiments, we observed that passing segmentation
maps to the discriminator often caused mode collapse during the
early stages of GAN training, resulting in meaningless outputs and
high FID scores. We hypothesize that it is mainly due to the mis-
match in value representations: the rendered segmentation maps
contain continuous floating-point values, whereas the ground-truth
segmentations parsed from RGB images are discrete labels. This is a
fundamental difference between segmentation maps and RGB/mask
images, since both ground truth RGB and mask images can contain
continuous values between 0 and 1. Therefore, the discriminator

Table 3. Ablation studies on segmentation supervision, deformable hair
geometry, and hair-face correlation module. The last row refers to our final
architecture design.

Seg. Hair Geom. Hair-Face Corr. FID ↓ FID-swap ↓

Seg. in D ✗ cross attn. 296.97 296.89
w/o Seg. loss ✗ cross attn. 10.56 31.97
w/ Seg. loss ✗ cross attn. 12.15 34.18
w/ Seg. loss ✓ – 12.11 29.99
w/ Seg. loss ✓ concat. 10.30 14.95
w/ Seg. loss ✓ cross attn. 7.67 20.56

can easily distinguish real and generated samples based on this
quantization discrepancy, breaking the training process at an early
stage. Surprisingly, removing the segmentation loss still produced
reasonable generation results with acceptable segmentation qual-
ity. Adding the segmentation loss encouraged a cleaner separation
between hair and face Gaussians, though it slightly increased the
FID score due to the additional constraints imposed on Gaussians.
We provide qualitative comparisons to discuss these observations
in Fig. 1 of our supplemental. The 3rd row further illustrates the
importance of our deformable hair geometry. In this experiment, we
replaced the deformable hair geometry with the average hair mesh
fitted from studio capture data and trained our model using this
fixed geometry. Quantitative results demonstrate that incorporating
a deformable hair geometry improves overall generation quality.
Visually, we observed that when the hair geometry is fixed, hair
Gaussians need larger deviations to represent varying hairstyles,
resulting in floating Gaussians appearing in random positions. Fig.
2 in supplemental includes a qualitative comparison of this artifact.
The last 3 rows examine different hair-face correlation modules.
In the 4th row, we remove this module entirely, while the 5th row
replaces it with a mechanism that concatenates whair and wface
with a lightweight MLP to fuse them and model their correlation.
The results indicate that our cross-attention mechanism achieves
the lowest FID, signifying better generation quality. Although the
concatenation mechanism achieves a lower FID-swap, qualitative
analysis reveals that it introduces a strong dependency on wface,
which reduces the diversity whenwface is fixed andwhair is swapped.
Fig. 3 in supplemental shows this artifact. Overall, these experiments
demonstrate that our final architecture design (as shown in the last
row) achieves the best balance of generation quality and diversity,
enabling 3D hairstyle editing in the generated results with a certain
guarantee of realism.

4.3 Latent Space Interpolation
Fig. 9 illustrates how variations in the generated 3D head corre-
spond to interpolations in the latent space of 3DGH. We begin
by randomly sampling two pairs of latent codes, which are lin-
early interpolated to produce intermediate representations. The
resulting renderings, arranged from left to right, show a smooth
semantic transition between two identities. Leveraging our com-
posable design, we independently interpolate between whair and
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Fig. 9. Linear interpolation in the latent space of 3DGH. Top: Interpolation of whair with the facial identity fixed, demonstrating smooth transitions between
hairstyles. Bottom: Interpolation of wface while keeping the hairstyle constant, illustrating gradual changes in facial features.

wface, enabling disentangled control over hair and facial features.
The seamless transitions and consistent semantic structure across
interpolations highlight the continuity and expressiveness of the
latent space learned by our model.

5 Discussion
Limitations and Future Work. While our method demonstrates

strong performance, it still faces several limitations. First, the ex-
pressiveness of our model is constrained by the quality and diversity
of the training data, which in our case are the images generated by
PanoHead [An et al. 2023]. A clear domain gap exists between these
synthetic images and in-the-wild images, making certain hairstyles,
such as buns and braids, difficult to generate. Addressing this is-
sue necessitates a large-scale dataset of in-the-wild images with
comprehensive coverage of frontal and back views, accurate cam-
era calibration, and reliable image alignment. Although works like
PanoHead [An et al. 2023] and SphereHead [Li et al. 2024] have
made progress in this direction, their in-house training data are
not publicly available at this time, and specific processing steps
are still needed to calibrate and align back views in the absence
of facial landmarks. Therefore, combining real-world multi-view

datasets such as RenderMe-360 [Pan et al. 2023] with synthetic data
would be an interesting future work to explore that may alleviate
these training data issues. Second, our model occasionally produces
back-view artifacts for long hairstyles that occupy a large portion
of the frontal view, as illustrated in Fig. 10. We attribute this to
our generator’s conditioning on both the latent code and camera
pose, following the design choice of EG3D [Chan et al. 2022] and
PanoHead [An et al. 2023]. Despite using an 80% pose-swapping
probability during training, rendering quality degrades when ren-
dering poses differ significantly from the conditioning poses. This
limitation is also observed in PanoHead [An et al. 2023] and Sphere-
Head [Li et al. 2024] because full-head image synthesis requires
360-degree rendering. Better conditioning on camera pose may re-
quire an advanced architecture as a future work. Third, our method
can produce hollow artifacts, particularly in hair regions, due to
the stretching and scaling of Gaussian primitives to represent thin
strand structures. While increasing the number of Gaussians may
alleviate this problem by providing denser coverage, it would also
lead to higher computational cost in terms of model size and training
time. Fourth, while our design choice of the cross-attention layer
in Eq. (3) is motivated by the real-world observation that there exist
correlations between ethnic facial features and culturally associated
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Fig. 10. Failure case illustrating artifacts in the back-view rendering of a
long hairstyle.

hairstyles, our analysis in Fig. 8 does not fully cover various cor-
relations other than gender. This is mainly because gender is the
dominant factor in hair-face correlations in the dataset we used.
Lastly, extending our framework toward animatable 3D avatars is
an exciting future direction. By incorporating parametric models
such as FLAME [Li et al. 2017], our method could be adapted to
support disentangled control over head pose, facial expression, and
hairstyle, paving the way for more versatile and customizable 3D
avatar generation.

Ethical considerations. As with other generative models for digital
avatars, our method carries potential risks related to misuse (e.g.,
identity manipulation) and biases. These concerns are partly due
to the use of synthetic training data, which may lack sufficient di-
versity in demographics and hairstyles, limiting the representation
of hair-face correlations across different ethnicities (see Fig. 4 in
supplemental). To mitigate such issues, we strongly advocate for
the responsible use of 3DGH, transparency in its deployment, and
the continued development of diverse, representative datasets. We
explicitly oppose any use of our work for malicious purposes, in-
cluding the spread of misinformation or the violation of individual
rights.

6 Conclusion
We introduce 3DGH, a Gaussian-based 3D GAN framework that
supports composable hair and face generation. Leveraging multi-
view studio capture data, we propose a novel data representation
with template-based 3DGS, in which hair Gaussians are rigged to a
deformable hair geometry constructed using PCA-based linear blend
shapes. This data representation drives the design of our network
architecture, which incorporates dual branches to independently
generate hair and face Gaussians. A cross-attention mechanism
is introduced to model the inherent correlation between hair and
face, ensuring coherent and realistic outputs. Our model is then
trained using a comprehensive objective that includes adversarial
loss, reconstruction terms, and regularization terms designed to
stabilize training and facilitate hair-face separation. We evaluate the
trained model both qualitatively and quantitatively, demonstrating
its superior performance in unconditional full-head image synthesis
and composable 3D hairstyle editing.
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