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Figure 1: Our method can automatically adjust the appearance of a foreground region to better match the background of a composite. Given
the proposed foreground and background on the left, we show the compositing results of unadjusted cut-and-paste, Adobe Photoshop’s Match
Color, the method of Lalonde and Efros[2007], and our method.

Abstract

Compositing is one of the most commonly performed operations
in computer graphics. A realistic composite requires adjusting the
appearance of the foreground and background so that they appear
compatible; unfortunately, this task is challenging and poorly un-
derstood. We use statistical and visual perception experiments to
study the realism of image composites. First, we evaluate a num-
ber of standard 2D image statistical measures, and identify those
that are most significant in determining the realism of a compos-
ite. Then, we perform a human subjects experiment to determine
how the changes in these key statistics influence human judgements
of composite realism. Finally, we describe a data-driven algorithm
that automatically adjusts these statistical measures in a foreground
to make it more compatible with its background in a composite.
We show a number of compositing results, and evaluate the per-
formance of both our algorithm and previous work with a human
subjects study.

CR Categories: I.4.10 [Image Processing and Computer Vision]:
Image Representation—Statistical

Links: DL PDF WEB DATA

1 Introduction

Compositing is a fundamental operation in computer graphics.
Combining a foreground object from one image with the back-
ground of another requires two operations to achieve a realistic
composite: first, extract the foreground object by computing an al-
pha matte, and second, adjust the appearance of the foreground
relative to its new background so that the two appear natural to-
gether. While the first problem has received considerable attention

in the research community [Smith and Blinn 1996; Wang and Co-
hen 2007; Rhemann et al. 2009], the second has not been systemati-
cally studied. Professional compositors have several rules of thumb,
but in the end, most composites are made realistic by trial-and-error
adjustment of standard image controls such as brightness, contrast,
hue, and saturation.

In this paper, we use statistical and visual perception experiments
to study the factors that influence the realism of image composites,
and propose an automated method to increase their realism. The
scope of this problem is large: composite realism is influenced by
semantics (e.g., is a polar bear in a rainforest realistic), and fac-
tors that require 3D reasoning to analyze (e.g., inter-reflections).
However, perception research has shown that the human visual sys-
tem is remarkably insensitive to certain lighting inconsistencies
within an image, such as shadow directions and highlight place-
ments [Ostrovsky et al. 2005; Lopez-Moreno et al. 2010]. If a user
is reasonably careful in choosing and locating a foreground relative
to a background, many composites can be made to appear realis-
tic by performing standard image processing operations, such as
color, brightness, and contrast transformations. We therefore limit
the scope of our study to 2D image processing operations, and leave
3D effects and semantics to the user (or other techniques). However,
adjusting an image composite to appear realistic with 2D operations
is still highly challenging for a novice user, with many degrees of
freedom whose correct values often seem ambiguous. Professional
compositors are typically able to achieve much better results, and
thus automation would be very helpful for novices. We also seek a
deeper, evidence-based understanding of the factors that influence
human perception of composite realism.

We are interested in three main questions. First, what are the key
statistical properties that control the realism of an image compos-
ite? Second, how do variations in these properties affect human
judgement of a composite’s realism? Third, can an algorithm au-
tomatically adjust these properties to improve the realism of a spe-
cific composite? To answer these questions we perform three tasks.
First, we use a large, labeled database of images that contain a fore-
ground object and background, and compare a number of common
image statistical measures to see which are the most correlated
between foreground and background. Second, we select the most
correlated statistics, and perform a human subjects study to test
how changes in these statistics influence human ratings of realism.
That is, we take natural images and manipulate the foreground and
background to introduce statistical deviations, and measure the in-
duced decrease in human realism ratings. Third, we use the insights
gleaned from the above experiments to design an algorithm to ad-
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just a foreground to match a background. More specifically, we find
that statistics between foreground and background typically match
better for one zone of the histogram (for example, the luminance
zones of highlights, mid-tones, or shadows) than for the histogram
as a whole, and the best zone varies from composite to composite.
Matching zones is also common practice for professional compos-
itors [Alexander 2011]. We therefore use machine learning tech-
niques to predict which zone to match for a specific composite. Fi-
nally, we validate and show that our technique creates more realistic
composites than previous automated techniques.

1.1 Related Work

The ideal method to adjust a foreground image to match a given
background is to simulate its appearance under the same illumina-
tion that produced the background image. Since this task is beyond
the ability of today’s algorithms, most techniques simply shift the
appearance of the foreground to better resemble the background.
For example, color transfer techniques [Reinhard et al. 2001; Rein-
hard et al. 2004; Pouli and Reinhard 2010] align the means and
variances of the color histograms of the two image regions. Adobe
Photoshop’s widely used “Match Color” feature is based on this
idea. The problem with this approach is that it conflates the effects
of reflectance and illumination; e.g., a forest is not green because
of a green light source, and thus it is not correct to turn the skin of
a person added to the scene green. One can shoot a realistic image
of a red car in a desert, even though their color distributions will
be very different. Lalonde and Efros et al. [2007] add to this tech-
nique by estimating the co-occurrence probability of the color dis-
tributions by finding nearest neighbors in an image database. How-
ever, this non-parametric approach requires a large database to be
searched for each composite, and depends on the presence of sev-
eral images that are similar to the target composite. The main focus
of their work is to predict whether a given composite will appear re-
alistic. However, they show composite adjustment as an additional
application; we therefore compare the results of our method to this
approach and to color transfer in Section 5.

Professional compositors employ a number of principles for adjust-
ing a composite. One professional compositor [Alexander 2011]
told us that compositors often focus on luminance zones. First, they
isolate the highlights and match their color and brightness, then bal-
ance the mid-tones with gamma correction, and finally match the
shadow regions. Our algorithm also adjusts based on zones, though
we automatically choose different zones to match for each compos-
ite, and give statistical evidence for the benefits of using zones.

A completely different approach to making image regions compat-
ible is to adjust their colors so that they match a predefined set of
templates that are thought to encode color harmony [Cohen-Or et al.
2006]. However, harmonious images are not necessarily realistic,
and the method ignores other factors such as luminance and con-
trast; finally, this approach has not been quantitatively evaluated.

An alternative to alpha matting is to seamlessly blend image re-
gions with methods like feathering, Laplacian pyramids [Ogden
et al. 1985], or gradient-domain compositing [Pérez et al. 2003; Jia
et al. 2006; Tao et al. 2010; Sunkavalli et al. 2010]. This approach
can work well if the two source images have similar colors and
textures; however, in other cases color bleeding and severe discol-
orations can occur. In practice, most whole-object composites are
still made with alpha mattes.

There are a number of related areas that inform our approach. Color
constancy is the related problem of recovering the appearance of an
input image under neutral lighting [Gijsenij et al. 2011]. Since the
problem is highly ill-posed, current solutions are still not robust.
Image forensics [Johnson and Farid 2005] seeks to detect compos-

ited images, while our goal is to understand and exploit the flexibil-
ity of the human visual system, rather than to mislead an algorithm.

1.2 Overview

In Section 2 we perform experiments to determine which statis-
tics of natural images are most correlated between foreground and
background. Specifically, we take 4126 natural images with a seg-
mented foreground, and measure the correlation of a number of can-
didate statistical measures. We find that the means of the high and
low zones of the histogram of a statistical measure tend to corre-
late more strongly than the mean of the whole histogram. For ex-
ample, shadows and highlights tend to match better between fore-
ground and background than overall mean luminance. We find that
luminance, color temperature, saturation, and local contrast are the
most correlated statistical measures between foreground and back-
ground.

In Section 3 we perform a human subjects experiment to measure
the relationship between mismatches in these selected statistical
measures and the decrease in perceived realism. Specifically, we
take a separate set of 20 images with a matted foreground and in-
troduce variations to the foreground along a specific axis (e.g., lu-
minance); we then measure the decrease in the human perception of
realism. One numerical outcome of this experiment is a set of scal-
ing values (Table 2) that linearly relates a change in each statistical
measure into a change in the human perception of realism.

In Section 4 we present an algorithm for adjusting a foreground to
appear realistic relative to a given background. The algorithm ad-
justs the foreground so that the means of the statistical measures
identified in Section 2 are matched. The main component of the
algorithm is a classifier that predicts the zone of the histogram of
each statistical measure that, when matched between foreground
and background, will produce the most realistic composite. The
classifier is trained on the same 4126 images used Section 2. The
classifier also uses the scaling values computed in Section 3 to aid
in the prediction. In Section 5, we evaluate the performance of our
algorithm and previous work.

2 Identifying Key Statistical Measures

Given a foreground f and a background b, our goal is to create a
composite that is perceived as realistic. In practice the background
of a composite is often fixed, so we focus on adjusting the fore-
ground appearance f into f∗ so that its composite with b is as re-
alistic as possible. Our first simplifying assumption is that we can
achieve a realistic composite by only adjusting standard 2D statis-
tical measures, e.g., luminance, contrast, and color histograms; we
ignore issues like semantics and 3D properties. We denote the col-
lection of statistical measures of a foreground or background region
asMf andMb, respectively. We therefore seek to adjustMf toM∗

f .

One approach to this problem is to predict the probability that a
composite appears realistic given its foreground and background
statistics, i.e., P (Real|Mf ,Mb). We could model this probability
with a collection of composites, both realistic and unrealistic, along
with human ratings of realism. However, the space of composites is
very large, and we would need to ensure that all composites are free
of issues such as poor matting or semantics, since we are not study-
ing these factors. Another approach is to realize that real-world
images are, by definition, realistic; therefore, a composite whose
statistics are similar to the statistics of real-world images should
also appear realistic [Lotto and Purves 2002; Lalonde and Efros
2007]. We can form a collection of real-world images with roughly
segmented foreground and backgrounds, and maximize the likeli-
hood of f∗ relative to this data, i.e., maximize P (Mf |Mb, Real).
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Figure 2: Likelihoods of the offsets for H,M,and L of luminance,
CCT, and saturation, respectively. These statistics have specific
meanings for various measures, e.g., H and L of CCT correspond
to the warmest and coldest colors.

This likelihood is hard to fully model. Instead, we first identify a
few key statistical measures that most affect the realism of a com-
posite. More specifically, we select statistics that satisfy the follow-
ing criteria:
1. The measure should be highly correlated between foreground and
background in real images. Therefore we can maximize realism by
adjusting the foreground to satisfy this linear relationship.
2. The measure should be easy to adjust in a photograph. That is,
given a desired value for a measure of the foreground, we should be
able to achieve that value with simple image processing operations.
3. The measures should be as independent of each other as possible.
That way, we can adjust the foreground to satisfy one correlation
without negatively affecting another.

We therefore group the set of statistical measures M into five in-
dividual categories that are commonly adjusted in composites: lu-
minance, color temperature (CCT), saturation, local contrast, and
hue. Within each group, we form a histogram of the property and
then compute a number of statistical measures of that histogram,
such as the mean, standard deviation, etc. (see Appendix A for a
complete list). We denote an individual measure within this over-
all set as M i. We can measure correlation between M i

f and M i
b

directly with a Pearson correlation coefficient, which computes the
goodness of a linear fit between two measures. Better linear fits are
obtained if we first transform the measures into perceptually linear
scales (Appendix A).

Another way to discover simple relationships between foreground
and background is to look at the offset δi = M i

f −M i
b in natural

images. If the distribution of δi is concentrated over a small range
of values, then the measure is also highly correlated between fore-
ground and background, and described by a simple constant offset.
Therefore we look both at the standard deviation of δi as well as
the correlation coefficient between M i

f and M i
b .

We collect 4126 images from the LabelMe data-set [Russell et al.
2008] with clearly labeled, meaningful, and un-occluded fore-
ground objects in front of background scenes. We choose the im-
ages to sample a wide variety of compositing scenarios, e.g., out-
doors, indoors, daylight, night, people, objects, animals, plants, etc.
For each candidate statistic M i, we compute the normalized stan-
dard deviation, σ∗ of δi as σ∗ = σ/`, where σ is the standard de-
viation of the normalized histogram of δi values across the image

H M L std kurt skew entropy
Luminance
σ∗ 0.058 0.149 0.189 0.070 0.182 0.263 0.143
r 0.241 0.194 0.493 0.139 0.049 0.131 0.228

CCT
σ∗ 0.287 0.145 0.071 0.105 0.188 0.246 0.225
r 0.310 0.463 0.495 0.202 0.068 0.196 0.218

Saturation
σ∗ 0.027 0.095 0.299 0.058 0.205 0.173 0.159
r 0.811 0.483 0.482 0.390 0.123 0.254 0.295

Hue
σ∗ n/a 0.348 n/a 0.413 0.492 0.474 0.158
r n/a 0.235 n/a 0.366 0.175 0.001 0.172

Local Contrast
σ∗ 0.150 0.016 0.000 0.012 0.170 0.152 0.137
r 0.719 0.713 0.403 0.760 0.192 0.235 0.681

Table 1: Statistical measures computed across our image collec-
tion. Smaller values of σ∗ (normalized standard deviation of δi)
and larger values of r (correlation coefficient between foreground
and background) indicate more useful measures. For every row, the
three best quantities are highlighted in bold.

collection, and ` = max ‖M i‖. We also compute the correlation
coefficient, r = corr(M i

f ,M
i
b).

Instead of only computing these measures over the entire histogram
of a category such as luminance, we found stronger correlations if
we separated the histograms of luminance into high (H), middle
(whole-histogram) (M), and low (L) zones. The average of each
zone is used as an individual statistical measure (Appendix A). For
example, in real images the mean luminance of highlight regions
tend to match better between foreground and background than the
mean of the whole histogram, which can be seen in the first row
of Figure 2; we show the likelihoods of the offsets for two other
measures in the other rows. The likelihoods of the offsets for other
statistics are given in supplemental materials. We also show num-
bers for σ∗ and r across zones in Table 1. (An exception is hue,
which is a circular value (Appendix A) soH and L are undefined. )

We can draw several conclusions from these results. Luminance
matches better between foreground and background in the high-
lights and shadows than in the mid-range. Local contrast and sat-
uration show very strong correlation. While CCT and hue are re-
lated methods of describing color, CCT shows stronger correlation
than hue. Last, all the likelihoods of offsets have single-peak dis-
tributions centered at 0. This observation statistically supports the
intuition behind the mean-matching approach of color transfer tech-
niques [Reinhard et al. 2004]. However, the correlations of the high
(H) and low (L) zones are much stronger than the for the whole
histogram (M) typically used by color transfer, which suggests that
matching by zones might lead to more realistic composites. Finally,
on average the means of the histogram zones H,M,and L show
stronger correlation than the other statistical measures. Though the
standard deviation sometimes performs well, the zone means are
enough to cover the best or nearly-best values in Table 1.

Based on these conclusions, we focus on mean-matching across dif-
ferent zones of the histogram for luminance, color temperature, sat-
uration, and local contrast. In the next section, we test the impact of
mismatches in these statistical measures on human judgements of
realism.
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Figure 3: Stimuli to study impact of variations in key statistical
measures. We show the matrices of composites after manipulating
luminance (left) and CCT (right) for a specific image; more exam-
ples can be found in the supplemental materials.
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Figure 4: Left: human ratings corresponding to the adjusted lumi-
nance matrix in Figure 3. Right: these ratings are fit by a Gaussian
function G(δi), where each data point corresponds to one cell in
the matrix on the left.

3 Impact on Human Realism Ratings

We have identified several key statistical measures that are strongly
matched between foreground and background in real images. How
do mismatches in these key statistical measures affects the judge-
ment of realism? The fact that natural images follow a certain sta-
tistical relation does not necessarily tell us the acceptable range of
variation in that statistical relation before a composite appears un-
real. Also, a numerical relationship between each statistical mea-
sure and its influence on human ratings of realism will help us com-
bine these different measures into a single algorithm for automatic
compositing. We therefore perform a perception experiment with
human subjects on Amazon Mechanical Turk (MTurk) to numeri-
cally model this relationship.

To design our experiment it is important to have a natural con-
trol image, and only vary one variable; otherwise, issues other than
the one we are studying could influence the perception of realism.
We therefore take 20 natural images from a public database [By-
chkovsky et al. 2011], carefully matte out the foreground, adjust
the foreground and/or background along a single axis, and re-
composite. In this way, we can be assured issues like semantics are
already satisfied. We perform this experiment for three key statis-
tical measures identified in the previous section: luminance, color
temperature, and saturation. For these measures, we can simply in-
crease or decrease the offset of this measure between foreground
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Figure 5: The fitted standard deviations of all images in the stimuli
of luminance, CCT, and saturation.

Luminance CCT Saturation
Units stops mired stops
σg 2.99 64.9 0.97

Table 2: Robust average standard deviations of the fitted rating
functions for luminance, CCT, and saturation.

and background by shifting histograms. We then measure the per-
ceived decrease in realism. (We skip the key statistical measure of
local contrast, for now, because it is not adjustable with simple lin-
ear operations; we address this special case in Section 4.)

We generate a 7 × 7 matrix of compositing results by adjusting
the foreground and/or background by a specific amount (two exam-
ples are shown in Figure 3). The center of the matrix is the original
image, and along the diagonal foreground and background are ad-
justed equally. We then acquire a realism score (0.0∼1.0) for each
composite (Appendix B).

A typical example matrix of human ratings is given on the left in
Figure 4. First, as expected, the diagonal along which the fore-
ground and background are adjusted equally is rated the most re-
alistic. Second, realism ratings decrease smoothly away from the
diagonal. Third, except for the extreme corners of the matrix, this
decrease can be modeled reasonably well as a function of the offset
Mi

f −Mi
b (where Mi is the mean of the histogram for the i’th

stimuli image). We therefore fit a rating function R(Mi
f ,Mi

b) as a
Gaussian function G:

R(Mi
f ,Mi

b) ≈ G(Mi
f −Mi

b) = G(δi) (1)

An example of this fit is shown on the right in Figure 4. See sup-
plemental materials for fits to other statistical measures and im-
ages. However, we note that the fitted Gaussian functions for dif-
ferent images generally have different means and standard devia-
tions. (For example, images with harsher or more dramatic lighting
have much larger standard deviations.) We therefore fit this Gaus-
sian separately per matrix.

The standard deviations σ of fitted Gaussian functions for all 20
images corresponding to luminance, CCT, saturation are shown in
Figure 5. We can see the variation in σ. While it may be possible
to predict the shape of this Gaussian for an image given features
computed from it, we would need many more than 20 training im-
ages to do so, and the need for very accurate mattes makes creating
additional training data expensive.

Nonetheless, we can use these fitted functions in two ways. First,
we can get a sense of how human realism ratings respond to varia-
tions in these measures. To visualize this impact, we choose an ex-
ample with close-to-median standard deviation, and show the orig-
inal image as well an adjusted version whose realism rating is re-
duced by 40% (Figure 6). Second, we can compute robust average
standard deviations for each statistical measure that approximately
places each measure on an equal, linear scale. That is, after apply-
ing our computed scale factors we can expect equal adjustments of
different statistical measures to produce equal decreases in realism
rating (modulo the error introduced by using an average). We create
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Figure 6: Left to right: the original image, the luminance-adjusted,
the CCT-adjusted, and the saturation-adjusted. In our experiment
the original image received the highest realism rating, while the
other three received realism ratings decreased to around 60%.

Fg

Bg

Figure 7: Top: results of matching highlight, mid-tone, and shadow
zones of the luminance histogram for a composite. Bottom: illustra-
tion of matching the corresponding zones of the histograms.

these scale factors σg as robust averages of the standard deviations
in Figure 5, after removing the highest and lowest values. These val-
ues are given in Table 2, and are used in the next section as part of
our algorithm to automatically improve the realism of a composite.

4 Automatic Composite Adjustment

We now present our algorithm for automatically adjusting a fore-
ground region relative to a proposed background so that their com-
posite appears more realistic. Our technique uses machine learning
to automatically choose a zone of the histogram to match between
foreground and background for luminance, CCT, and saturation.
Once a zone is chosen, we shift the foreground’s histogram so that
the mean of the zone matches the mean of the background’s zone.
We adjust local contrast using a separate technique, since contrast
cannot be manipulated with simple histogram shifts.

4.1 Using Zones

Given the evidence in Section 2, the most straightforward approach
to aligning the statistics of luminance, CCT, and saturation is to
select the zone of each measure’s histogram with the lowest stan-
dard deviation (σ∗in Table 1). Given that zone, we could shift the
histogram of the foreground so that the mean of that zone matches
the mean of the zone in the background (Figure 7). This approach
would select the same zones for each composite, and would be very
similar to color transfer techniques [Reinhard et al. 2001] except
that instead of using the entire histogram, we would use a zone.

We can evaluate this approach using the 4126 segmented images
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Figure 8: Left: the offsets of different zones of the luminance his-
tograms per image. Right: the minimal offset (created by selecting
the minimum of low, mean, high) of the luminance histograms. See
supplemental materials for the offsets of CCT and saturation.

H M L Best Predicted
Luminance
stops 0.405 1.411 1.540 0.230 0.372

CCT
mired 129.5 64.4 32.3 8.53 17.21

Saturation
stop 0.168 0.811 2.581 0.096 0.120

Table 3: The MAE errors for five compositing methods. Five
columns show the results by matching using high, mean, low zones,
the best zone (oracle algorithm), and our multi-label classifier.

from Section 2 and an error metric. We denote the set of zone re-
gions as z (where z ∈ {H,M,L}), and given a statistical measure
M , we denote M(k, z) as the mean value of that measure on the
k’th image in our collection in the zone z. We use the mean absolute
error (MAE) in this statistical measure that is incurred by selecting a
specific zone to match, orE(z) = 1

n

∑n
k=1 |Mf (k, z)−Mb(k, z)|,

where n is the number of images in our collection. The errors of
these schemes are shown in the first three columns of Table 3. A
low error indicates that matching the means between foreground
and background using that statistical measure is better able to re-
produce the original images of our collection. However, the error
will never be exactly zero, since the offsets of natural images are
not exactly zero (i.e., there are always tails in the distributions in
Figure 2). The error is lowest if we use the H portion of the lumi-
nance histogram, the L portion of the CCT histogram, and the H
portion of the saturation histogram. Note that using the entire his-
togram (M) (i.e., not using zones) is not optimal for any measure,
which supports our claim that using zones is more effective.

This algorithm ignores the particular characteristics of a composite
in selecting zones; could we do better by selecting a zone dynam-
ically per composite? This idea is motivated by the plots in Fig-
ure 8. The left plot shows that the offset between background and
foreground for a zone of the luminance histogram for a particular
image may not be very close to zero. However, the right plot shows
that typically at least one of the H,M,L zones does have a near-
zero offset. What if we could know which zone of the histogram
is likely to match best between foreground and background for a
composite? The fourth column of Table 3 shows the error of a hy-
pothetical “oracle” algorithm always predicting the best zone that
produces the smallest offset. Note that this error is still not zero
since the smallest offset is still not exactly zero for each test image.
Nonetheless, the performance is much better than always using the
same zone. We therefore attempt to automatically predict the best
zone with machine learning.
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4.2 Selecting Zones

One approach to selecting zones to use for a composite is to train a
classifier to choose one of three options {H,M,L} per composite
for each statistical measure. However, there may be more than one
zone with a near-zero offset, so treating such a zone as unsuitable
for matching simply because another zone performs slightly better
might confuse a classifier. Instead, we take a multi-label classifica-
tion approach [Tsoumakas and Katakis 2007], where more than one
label can be applied to an instance.

Specifically, we train three separate binary classifiers per statistical
measure (one per zone), where each classifier predicts whether the
zones {H,M,L} are individually suitable for composite match-
ing. To form binary training data from our collection of 4126 im-
ages from Section 2, we compare the offset between foreground and
background to a realism threshold T for each zone z of luminance,
CCT, and saturation. If the offset of the training image is below
this threshold we assign label 1, since matching using this measure
would produce a realistic image similar to the original, and 0 other-
wise. To compute threshold T we use a scaled version of the robust
standard deviations computed in Table 2, namely T = s ∗ σg , with
s = 0.1 chosen by several iterations of cross-validation using a
small-scale trial version of our MTurk evaluation study described
in Section 5. Note that we use the same T value for each zone.

What features should we use for our classifier? Our expectation
is that the shape of the histogram for a feature is correlated with
which zone might match well. For example, a luminance histogram
with significant regions of highlight or shadow may match better
with the H or L zones, respectively. We therefore use as features
statistical properties of the histogram of that measure for both the
foreground and background of the image. For example, for lumi-
nance we use std, skew, kurt, entropy, p1, p2, ..., p20, where
pj , j = 1, 2, .., 20, is the portion of the jth bin in the luminance
histogram. We separately compute these features on the foreground
and background histograms.

We use a random forest classifier [Liaw and Wiener 2002] with
default settings. We also tried SVM [Chang and Lin 2011] with
an RBF kernel, but found it worked slightly less well. The mis-
classification rates (as percentages, computed using 10-fold cross-
validation on the training data) of our classifiers are shown in Ta-
ble 4.

H M L
Luminance 20.9% 18.4% 22.2%

CCT 6.5% 20.9% 21.2%
Saturation 14.8% 14.1% 3.4%

Table 4: Error rates of every two-label classifier for luminance,
CCT, and saturation.

Given the output of three zone classifiers for a specific statistical
measure, we finally combine them into a single choice to match
to produce a composite. This combination is easy if only one of the
three classifiers returns 1, but what if multiple zones are suitable for
matching? Our principle is to choose the zone which will cause the
least change to the foreground, since large changes lead to more no-
ticeable artifacts (e.g., clipping). We consider a zone a “candidate”
if the output of its classifier is 1. If there is more than one candi-
date zone, we consider each candidate zone zi in turn, and sum the
absolute mean shift of the histogram for all candidate zones that is
induced by matching zi. Note that any clipping that may occur at
the right and left of the histogram is taken into account during this
computation. Finally we select the zi with the minimum sum. If
several zi have the same sum, we select the one with the minimum
input offset. If no zones are candidates, we simply selectM.

Figure 9: The sequence of adjustments for a particular composite.

The result of the above technique is the choice of a single zone
per composite. We show the error rate of our technique in the fifth
column of Table 3, computed with 10-fold cross-validation; it is
lower than always choosing the same zone, but not as low as the
perfect “oracle” selector.

4.3 Our Pipeline

Using the selected zone from the previous section, we adjust each
key statistical measure in turn. Contrast is handled as a special case
(Appendix C), since it cannot be adjusted with simple histogram
shifts. Instead, inspired by Paris et al. [2011] we use an S-shaped
curve to adjust local contrast. We select the H zone of the con-
trast histogram, and choose the shape of the S-curve to best match
local contrast as described in Appendix C. Note that contrast and
luminance are not independent adjustments; however, our contrast
adjustment technique is designed to not move the mean of the lu-
minance histogram. After contrast, we adjust luminance, CCT, and
saturation, in turn. In our experiments we found other orders gener-
ally work as well, as long as contrast adjustment is performed first.
Our adjustment algorithm is greedy; alternatively, it could iterate
several times over this sequence of steps. However, we found the
results did not change significantly after the first iteration. Figure 9
shows the intermediate results of the steps of our pipeline.

Input: f and b
1. Adjust local contrast M0

f using S-shape correction.
2. Adjust luminance M1

f .
Select zone z that is best for matching.
Shift M1

f , so that M1
f (z)−M1

b (z) = 0.
3. Adjust CCT M2

f .
Select zone z that is best for matching.
Shift M2

f , so that M2
f (z)−M2

b (z) = 0.
4. Adjust saturation M3

f .
Select zone z that is best for matching.
Shift M3

f , so that M3
f (z)−M3

b (z) = 0.
Output: adjusted f∗ and b.

5 Results and Evaluation

We show a number of compositing results adjusted using our au-
tomatic method, and compare them to other techniques. Table 3
shows one way to evaluate the success of our method on images
that we already know are real; however, a more useful evaluation
involves the adjustment of composites with regions taken from sep-
arate image sources. We therefore created a test set of 48 com-
posites, and made an effort to ensure that each composite is se-
mantically reasonable. We then created adjusted results using five
techniques: simple cut-and-paste, a manually adjusted composite,
Photoshop Match Color, the method of Lalonde and Efros [2007]
(which we label ColorComp), and our method. Six examples are
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●Ours ● Cut‐and‐paste
(0.00)

● MatchColor
(0.00)

● ColorComp
(0.01)

● Manual
(0.79)

●Manual ● Cut‐and‐paste
(0.03)

● MatchColor
(0.00)

● ColorComp
(0.00)

● Ours
(0.20)

●ColorComp ●MatchColor
(0.00)

● Cut‐and‐paste
(0.87)

● Ours
(0.99)

● Manual
(0.99)

●Cut‐and‐paste ●MatchColor
(0.00)

● ColorComp
(0.13)

● Ours
(0.99)

● Manual
(0.99)

●MatchColor ● Cut‐and‐paste
(1.00)

● ColorComp
(1.00)

● Ours
(1.00)

● Manual
(1.00)

t‐tests at significance level 0.05

Figure 10: Paired t-test results to compare all methods. For each
method (every row), we list the other methods and highlight in
gray those that were outperformed at a statistically-significant fre-
quency. We also give all p-values.

shown in Figure 11. The manually-adjusted composite was created
in Photoshop by one of the authors who has extensive Photoshop
experience, and typically took 3-4 minutes to create. We computed
the results of ColorComp using code and data provided by its au-
thors, which typically took 3-5 minutes to execute per example.
Photoshop Match Color uses a standard color transfer technique
similar to Reinhard et al. [2004]; color transfer is useful for a num-
ber of creative tasks, and compositing is not necessarily its main
application. Our method takes 5-15 seconds to execute using unop-
timized Matlab code; the bottleneck is the contrast adjustment step.
The results of all these techniques on all 48 composites are given in
supplemental materials.

To evaluate the relative realism of these five techniques, we per-
formed an experiment using Mechanical Turk. To simplify the task,
we used a forced choice test between two alternate versions of the
same composite, where the subject was asked to choose the most
realistic alternative. (An alternate methodology we considered was
to collect individual realism ratings for each composite. However,
those ratings would be more sensitive to factors that influence real-
ism that we are not studying, such as the semantic likelihood of the
depicted scene.) The methodology of our experiment is described
in Appendix B; we collected, on average, 12.3 human choices for
each of the 480 possible comparisons.

First, we use one-tailed t-tests to compare each method against each
other method. We show which methods are better than others with
significance level p < 0.05 in Figure 10. Our method outperforms
all other automatic methods, and its performance is not significantly
different than manual adjustment. Second, we convert the series of
paired comparisons into scaling results that place the performance
of each method on a single scale; this scaling can be performed
individually for each composite (Figure 11, inset in each row, as
well as supplemental materials), and averaged over all composites
(Figure 12). We use Thurstone’s Law of Comparative Judgments,
Case V [David 1988], which assumes that each method has a single
quality score, and observer estimates of this score are normally dis-
tributed. The resultant scale values are linear multiples of this score,
so that differences between scale values are in the units of standard
deviation of preference. Higher values are better. Figure 12 shows
that our method performs slightly worse than manual adjustment,
but much better than all other automatic methods. ColorComp sig-
nificantly outperforms color transfer; however, surprisingly it does
not outperform cut-and-paste. This may be because many of our
scenes have natural lighting, and thus do not require large adjust-
ments to appear natural.

The scales for individual composites (the insets in Figure 11, and

0.0413 

0.2001 

-0.4407 

0.0144 

0.1849 

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

cut-and-paste

manual

MatchColor

ColorComp

ours

Scaling Results across All Composites 

Figure 12: Comparison of all methods by scaling results across all
composites. Higher scores are better.

supplemental materials) can diverge quite significantly from the
average. For example, in the fifth row of Figure 11, ColorComp
performs best. However, the fourth row shows a typical failure of
color transfer (which is also a component of ColorComp), where
the green color of the forest is unnaturally transferred to the per-
son. In the last row, our method significantly outperforms the other
automatic techniques. However, it also shows a limitation of our
method: we cannot correct the harsh lighting of the foreground that
still makes this composite unrealistic.

5.1 Limitations

Along with the examples in Figure 11, the supplemental materials
show additional failure cases. There are several sources of error.
First, our classifier sometimes chooses the wrong offset to match.
Second, even the minimal offsets between foreground and back-
ground for real images are not exactly zero, so perfect classification
will still not yield perfect adjustments. Even the most peaked dis-
tributions in Figure 2 have tails, so any algorithm that uses mean-
matching will have errors. Third, we do not use spatial or proximity
cues, even though areas of the background close the foreground are
probably more relevant than areas farther away. For example, light-
ing can change with respect to depth in the scene or proximity to a
light source. Fourth, we use hard thresholds to decide if a zone is
appropriate for matching during the training phase; near-threshold
values can cause incorrect decisions.

Finally, a natural question is whether our method could be used
for the main problem addressed by Lalonde and Efros [2007]: pre-
dicting whether a chosen foreground and background will appear
realistic together. Unfortunately, the realism ratings we collect in
Section 3 measure human response to variations along a single axis
(e.g., luminance); it is unclear how to combine simultaneous varia-
tions along multiple axes into a single realism prediction.

6 Conclusion

In this paper we studied the problem of adjusting a composite to
appear realistic; our automatic technique significantly outperforms
previous methods. The biggest limitation of our method is that
we limit our scope to standard 2D image processing adjustments;
some composites will need more specific or complicated adjust-
ments such as relighting to truly appear realistic.

Finally, while we have identified image statistics that are correlated
with composite realism, there is still much to be done to truly under-
stand the factors that influence human perception of realism. Why
are these statistics more correlated with realism than others, and is
the relationship causation or correlation? Also, our zone selection
classifier is a black box; how does it determine which zone is best

Understanding and Improving the Realism of Image Composites        •        84:7

ACM Transactions on Graphics, Vol. 31, No. 4, Article 84, Publication Date: July 2012



Figure 11: Composites adjusted by: cut-and-paste, manual, Match Color, ColorComp, and ours. Insets show their relative scores from the
human subjects study.
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for matching? Finally, while we have evaluated our results with hu-
man subjects, would expert compositors have different rankings of
methods? We will explore these questions in future work.
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Appendix A. Image Statistical Measures

Image Statistics

To compute image statistics on an input image or composite
in sRGB color space, the pixels are first inversely Gamma cor-
rected [Stokes et al. 1996]. We then transform image statistics so
that they are approximately linear to human visual perception. Lu-
minance and saturation are converted into log domain based on We-
ber’s law, and CCT is defined by mired [Ohta and Robertson 2005].
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Luminance: we use log2 Y , where Y (normalized to [ε, 1.0]) is the
luminance channel of xyY space, where ε = 3.03 × 10−4 (corre-
sponding to intensity 1 in a 0-255 greyscale image before inverse
Gamma correction) is used to avoid undefined log values. The unit
of difference in log2 domain is a stop.

Correlated Color Temperature (CCT): we use “mired” as the
unit of CCT. 1 mired = 106/K, where K is the Plankian color
temperature in Kelvin, clipped in [1500, 20000] that is the normal
range of natural lighting. CCT is computed using the package Opt-
Prop [Wagberg 2007].

Saturation: we use log2 S, where S ∈ [ε, 1.0] is the saturation
channel of HSV space.

Hue: we use H , where H is a circular value in [0.0, 1.0] (or
[0◦, 360◦]), the hue channel of HSV space.

Local contrast: Locally defined Weber contrast [Peli 1990], cx,
is used. For every pixel x, cx = Lx/Lx, where Lx is the pixel
luminance, Lx is the local average luminance, which is the output
of a Gaussian filter with σ = 1.5, filter radius r = 3.

Histogram Statistics

For each statistical measure M i, the statistics are computed across
all pixels in corresponding regions, i.e., foreground or background.
For image properties sensitive to color bias, e.g., CCT, hue, and sat-
uration, they are only computed across pixels that are neither over-
nor under-exposed. In practice, we use the pixels with 0.013 ≤
Y ≤ 0.88, where two thresholds correspond to intensity 60 and
240 in a 0-255 greyscale image before inverse Gamma correction.

The statistics H,M,L are defined as H = M i > M i
99.9%,M =

M i, L = M i < M i
0.1%, where M i > M i

99.9% represents the
mean of pixel luminance which are greater than the 99.9% quan-
tile. For kurtosis, we use the definition by which normal distri-
butions have kurtosis of 0. Entropy is computed by first scal-
ing M i into [0, 255], and using the computation routine of stan-
dard greyscale image entropies (e.g., function entropy in Matlab).
For other statistics, standard definitions are used. Notably, circu-
lar statistics [Berens 2009] are used for hue. For example, circular
mean of hue is used in place of ordinary mean.

Alpha Mattes

We assume that every composite has an alpha matte for the fore-
ground object. When computing Mf , we morphologically erode
the alpha matte to avoid inaccuracy of matte boundary, and then
compute Mf in the region where matte values are greater than 0.5.
When computing Mb, the original alpha matte is morphologically
dilated, and then Mb is computed in the region where matte values
are lower than 0.5. To avoid distant background, Mb is only com-
puted within an area equal to the bounding box of the foreground
scaled by 3.

The elements for erosion and dilation operations are disks, whose
radius for erosion is re = 0.03×min(w, h) and radius for dilation
is rd = 0.15×min(w, h), where w, h are the width and height of
the bounding box of the foreground object.

Appendix B. Perceptual Experiments

Impact on Human Realism Ratings

Twenty natural images are used as input, with manually created
foreground object alpha mattes. For luminance, the foreground and
background of every image are respectively manipulated to 7 levels
via shifting (±3 steps by 0.5 stop), which are then composited to

form 72 = 49 composites. In total, we generated 20 × 72 = 980
composites for MTurk workers to evaluate. The same number of
stimuli are generated for CCT and saturation by similar procedures.
The step in manipulating CCT is 40 mired, and the step of satura-
tion is 0.25 stop in log2 domain. If the image properties of some
pixels exceed the defined range in Appendix A after manipulation,
clipping is performed.

Every MTurk worker is presented with a series (23) of composites
to evaluate, with a two-alternative forced choice, “manipulated” or
“real”. Instructions and examples are given. The time for each eval-
uation is limited to 12 seconds. We present 3 out of 23 evaluations
as test cases with very obvious status of “real” or “manipulated”.
Answers that fail to pass at least two of the three test questions are
classified as random answers, and discarded in analysis. In the end,
there are 1360 valid responses for luminance, 969 for CCT, and
1048 for saturation. Every composite is evaluated 15+ times. The
rating for a composite is the proportion of answers of “real”.

We control each specific MTurk task so that the 23 composites (20
for actual study, 3 for test) presented to a worker are all from differ-
ent natural images. Any one worker is prohibited from participating
in more than one experiments in 24 hours, to avoid seeing the same
foreground or background twice in succession.

Evaluating Composites

We use all 48 composites as the stimuli, for which we compare
five alpha-matte-based adjusting methods. All results are shown in
the supplemental materials. In the user study, we use the scheme
of forced two-alternative choice (FAC), where every participant is
requested to compare a series of pairs of results and pick a more
realistic one (12 pairs for actual comparison and 4 pairs for test).
The order of comparisons is randomized. The 4 test examples pair
one obviously real image with an obviously fake composite. The an-
swers that fail to correctly classify at least three out of four test com-
parisons are regarded as random answers. 653 workers responded
to our test and 151 random answers are discarded. Every pair of
comparison is evaluated by 10+ (by average 12.3) workers for sta-
tistical robustness.

Appendix C. Adjust Local Contrast

We increase local
contrast by a global
pixel-wise luminance
transformation using an
S shape curve; the in-
verse S curve decreases
local contrast, as shown
in the inset. The input
luminance value Lin is

PL
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P1 =(1,1)
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P11
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S‐curve, α<0.5
P0 =(0,0)

P1 =(1,1)

Pm P12P02

P01

P11

P’1

P’0
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Inverse S‐curve, α>0.5
Lin

Lout

Lin

Lout

re-mapped to a new output value Lout along the curve; the same
curve is used across the image. In this transformation, luminance
is defined by Y (0 ∼ 1) of xyY space (not in log domain). The
turning point pm of S curve is the average luminance, by which
the curve is divided into an upper and a lower sub-curve. Each
sub-curve is a Bezier curve with three anchors. The upper curve
is controlled by pm, pU , p1, and the lower curve by pm, pL, p0.
The degree of transformation is controlled by pU and pL, where
pU = p11 + α(p12 − p11) and pL = p01 + α(p02 − p01). If
α < 0.5, it is an S curve that increases local contrast; if α > 0.5,
it is an inverse S curve that decreases local contrast. If α = 0.5,
it degrades to a straight line. In practice, we search α ∈ [0.4, 0.6]
to find the best curve that matches H of local contrasts between
foreground and background.
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