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Abstract. We describe a new framework for efficiently computing and storing
global illumination effects for complex, animated environments. The new frame-
work allows the rapid generation of sequences representing any arbitrary path in a
“view space” within an environment in which both the viewer and objects move.
The global illumination is stored as time sequences of range images at base loca-
tions that span the view space. We present algorithms for determining locations
for these base images, and the time steps required to adequately capture the effects
of object motion. We also present algorithms for computing the global illumina-
tion in the base images that exploit spatial and temporal coherence by considering
direct and indirect illumination separately. We discuss an initial implementation
using the new framework. Results from our implementation demonstrate the ef-
ficient generation of multiple tours through a complex space, and a tour of an
environment in which objects move.

1 Introduction

The ultimate goal of global illumination algorithms for computer image generation is
to allow users to interact with accurately rendered, animated, geometrically complex
environments. While many useful methods have been proposed for computing global
illumination, the generation of physically accurate images of animated, complex scenes
still requires an inordinate number of CPU hours on state of the art computer hardware.
Since accurate, detailed images must be precomputed, very little user interaction with
complex scenes is allowed.

In this paper, we present a range-image based approach to computing and storing
the results of global illumination for an animated, complex environment. Range-image
based systems have been used previously in flight simulators [3] and in computer
graphics [7]. Range images store the distance to the visible object for each pixel, as well
as the radiance. While previous research has demonstrated the potential of range-image
systems to allow a user to tour a complex scene at interactive rates, the problem of
efficiently rendering animated, globally illuminated environments within the context of
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such a system has not been considered. In this paper, we present a new framework that
addresses this problem.

The contributions of this paper are several. We build on previous work by considering
how animated environments (i.e. environments in which objects as well as the user can
move) can be represented as time sequences of range-images. We explore how to select
a set of base views for the range images as well as the time steps required to capture the
effects of object motion. Further, we consider how global illumination can be efficiently
computed to generate each of the range-images. Previous global illumination methods
have successfully exploited spatial coherence by separating the calculation of direct and
indirect illumination [6, 23]. We build on this idea and exploit temporal coherence as well
by separating the calculation of temporal variations in direct and indirect illumination.
These innovations form the basis of a new framework that allows the rapid generation
of views along arbitrary paths within a “view space,” which is a subspace of the full
environment. We present results from a preliminary implementation that demonstrate
the potential of the framework to expand the level of interaction possible with complex,
accurately rendered, animated environments.

2 Background

The approach we present builds on work in two areas – the traversal of complex,
realistically shaded synthetic environments, and the calculation of global illumination
in animated environments.

2.1 Traversal of Complex, Realistic Environments

The ultimate visualization system for interacting with synthetic environments would
render perfectly accurate images in real time, with no restrictions on user movement or
the movement of objects in the environment. A number of different approaches have
been developed for attempting to build such a system.
Polygons with Hardware Lighting. One approach is to use hardware lighting effects
to render sequences of images with heuristic, local illumination models. In this scheme,
the illumination of a surface depends only on its own characteristics and that of the
parallel or non-physical point (i.e. no 1=r2 drop off) light sources. While hundreds of
thousands, or millions of polygons can be rendered per second, for complex scenes
this means that individual objects must have simplified geometries to achieve real time
speeds. Hardware rendering effects can be very useful for giving a sense of traversing
a space for some applications. However, they are far from realistic because of the non-
physical lighting models used and the limitations on numbers of polygons that can be
used to model the environment.

Radiosity. In contrast, radiosity techniques explicitly model the physical interreflec-
tion of light in a scene to compute the radiance L (energy per unit time, projected area
and solid angle) leaving each object [13, 20]. This representation aids in the spatial per-
ception of a scene. A radiosity solution is a set of radiance values at locations distributed
over surfaces in an environment. The results of such a solution are view-independent.



Given a solution, walkthroughs can be performed by converting the radiances to RGB
values, which can be used in place of hardware lighting. Thus, radiosity approaches
represent an improvement in both the ability to interact with a scene as well as in the
accuracy of the illumination effects.

The primary limitation of the radiosity method as originally introduced, however,
was that it was restricted to ideal diffuse reflectors – that is to surfaces for which L is
independent of the direction of view (�; �) from the surface normal. Since the human
visual system is very good at detecting and interpreting highlights that result from the
directional variation of L, this representation is restrictive. Extensions of the radiosity
method have been developed to account for the full range of bidirectional reflectance
distribution functions (BRDF’s) that occur in real life. In a method developed by Sillion
et al. [19], a directional radiance functionL(�; �) is computed for sample points (x; y; z)
on surfaces in the environment, rather than simply a radiance value L. Such a method
however substantially increases the pre-computation time, storage requirements, and
time to traverse the complex scene.

Pre-Recorded Animations. To date, the most realistic animations are created by using
algorithms which are capable of taking diffuse interreflection and nondiffuse reflection
into account [22]. These algorithms are often termed photorealistic. While these algo-
rithms are capable of depicting very accurate illumination effects, it is at the cost of
interactivity. Creating an animated sequence with these algorithms is very time con-
suming when compared to the algorithms discussed above. Further, animated image
sequences may only be generated if the viewer paths and object motions are specified
a priori. Once a sequence is computed, the user is restricted to viewing a fixed set of
frames as they were computed. A small amount of freedom of movement can be allowed
by recording a network or tree of paths for the viewer to tour.

Range-Image Interpolation. Range image interpolation has been employed in flight
simulators [3], and has been applied to more general graphics applications by Chen and
Williams [7]. In this approach, the three dimensional scene is replaced by a set of images
for which the view point, and the radiances and ranges (i.e. the distance to nearest visible
object) for each pixel are stored. As a user traverses the environment appropriate views
are synthesized by morphing the base range images. Chen and Williams focus on how
to perform this morphing, and suggest how the images can be obtained – e.g. examples
cited include physical image capture and using images from a radiosity solution. Any
global illumination method could be used to generate the base images.

A major advantage of the range-image approach is that storing and traversing the
scene are only weakly dependent on object space complexity. A scene with hundreds of
thousands of polygons can be represented by range images which, after data compres-
sion, are at most a couple of orders of magnitude larger than range images representing
a few simple cubes. In general, range image interpolation sacrifices some of the freedom
of movement possible in a radiosity walk-through for increased accuracy in geometric
detail and lighting accuracy. Note, however, that unlike prerecorded animations, the
user can move freely in a subspace of the environment rather than moving only along
predefined paths. The number of base images required to represent an environment for
a given subspace of possible views is an open research problem.



2.2 Global Illumination of Animated Environments

We wish to tour complex environments in which objects move. Systems that produce
animations with simple local shading can easily exploit image coherence. If local shading
only is considered new frames can be produced rapidly by only changing the portions
of the image in which there are moving objects. For images generated using complete
global illumination solutions, the problem is more difficult. When one object moves it
changes the illumination of all of the other objects in the scene to some extent.

There are essentially three possible ways to compute global illumination: object
space, image space, and hybrid object/image space methods. In general, relatively little
work has been done to develop efficient methods for animated environments.

Object Space. The radiosity method, described in the previous subsection, is an object
space method. Radiance distributionsL(x; y; z; �; �) are computed for objects without
reference to the images in which the object will appear. The object space approach
has the advantage that no interreflection calculation has to be performed as images are
finally computed. It has the disadvantage that many radiances have to be computed that
never appear in any images. The exception to this is the importance driven radiosity
algorithm proposed by Smits et al. [21].

Another major drawback of the original radiosity method was that although it al-
lowed walkthroughs of static environments, a costly new radiosity solution was required
for each frame if any object moved. Considerable effort has been put in to develop ra-
diosity methods that exploit temporal coherence in lighting. Baum et al. [2] developed
a method for identifying geometric form factors that would not need to be recomputed
for a full matrix radiosity solution as an object moved through a prescribed path. Chen
[5], George et al. [11], Müller and Schöffel [16] and Forsyth et al. [10] have devel-
oped progressive refinement radiosity [8] solutions that are updated incrementally for
temporal changes in object locations. Each method essentially starts with the solution
for the previous time step, “undoes” the effect of the object that has moved, and then
computes the effect of the object in its new position. Since most objects have a limited
spatial effect, such incremental approaches converge quickly. Generally, the shadows
are recomputed, and interreflected light is only propagated to a small extent before it
falls below the acceptable threshold of “unshot radiosity.” These methods effectively
exploit the temporal coherence in the radiosity solution.

In all of the temporal radiosity methods, full illumination, rather than just direct
or indirect, is computed. None of the methods have examined whether the temporal
sampling rate for new radiosity solutions can be different from the frame generation
rate.

Image Space. Monte Carlo path tracing (MCPT) [15] is an image space method. In
MCPT stochastic methods are used to compute the radiance L(i; j) which will be seen
through a pixel at location (i; j) on the screen. MCPT has the advantage that if an object
in the environment doesn’t appear in a particular image, its radiance does not have to
be computed. This is an advantage for environments that have many more objects than
the image representing it has pixels. MCPT has the disadvantage that it does not exploit
spatial coherence – each pixel is computed independently. In general, this failure to



exploit spatial coherence has kept MCPT from becoming a widely used technique. No
work has been done to accelerate MCPT for animated sequences.

Hybrid Object/Image Space. Hybrid methods for global illumination combine the
advantages of object and image approaches. Detailed radiance is only computed for ob-
jects which appear in the image. Spatial coherence is exploited by calculating multiple
reflections in object space. Examples of hybrid methods are the Radiance system and
the multi-pass progressive refinement methods [6] [18].

Specifically, in hybrid methods, visibility and direct illumination calculations, for
which the level of detail is limited by the pixel resolution, are computed in image
space. Indirect illumination is computed in object space. In general, illumination is a
continuous field, with sharp discontinuities occurring only when point light sources are
instantaneously obscured [1]. Since indirect illumination is the result of multiple reflec-
tions, giving rise to many extended “secondary” light sources, indirect illumination is
generally a smoother function than direct illumination. As a result, indirect illumination
can be sampled relatively sparsely in space, and intermediate values found by interpo-
lation. In the Radiance system, indirect illumination is saved as a set of “cached” values
in object space. In the multi-pass progressive refinement method, indirect illumination
is found by a radiosity solution for a crude discretization of the environment.

To the authors’ knowledge no work has been published on efficiently updating
hybrid object/image space global illumination solutions for moving objects.

3 A New Framework

In this section we describe a new framework for computing global illumination for a
system for traversing complex animated scenes. This framework is based on the tech-
niques outlined in the previous section that are most able to achieve real-life freedom of
movement and rendering accuracy. The new framework is 1) is a range-image based sys-
tem, and 2) exploits coherence by computing direct and indirect illumination separately
in both space and in time.

3.1 An Image Based System

As mentioned in Section 2, range-image based systems have the advantage of very effi-
ciently representing geometrically complex environments. This advantage over polygon
based systems is compounded when we wish to represent a photometrically accurate
version of the environment.

The advantage of the image-based approach over radiosity for photometrically
accurate scenes extends even further when allowable error in the solution is considered.
For any global illumination solution, the computation time can be drastically reduced by
allowing some known error level in the results, rather than attempting to compute results
to machine precision [14]. But what is an allowable error level? The allowable error
depends on viewer perception, not on the characteristics of the object. In a radiosity
solution, a high degree of accuracy is required, because the view of the object is
unknown. The “worst case” must be assumed. Perceptual error metrics are inherently



image based, since the accuracy required for a particular radiance depends on the
radiance distribution in the visual field [4]. In an image-based system, much better
estimates can be made of allowable error in the radiance solution, and the solution can
be computed much more efficiently.

In our new framework then, the global illumination solution will be computed in
the form of a set of base range images, which will be interpolated to produce a frame at
each time step. A user will then be able to move freely within the space spanned by the
base range-images.

3.2 Exploiting Temporal Coherence in Global Illumination

As discussed earlier, several researchers have proposed radiosity solutions that effi-
ciently exploit the temporal coherence in global illumination variations as objects move.
In these approaches, the location and radiance distribution is stored for each object. As
the observer moves through the scene objects are projected in to the view with the
appropriate radiance. The advantage of this approach is that the global illumination for
each time step has been incrementally computed by exploiting object space coherence.
That is, a completely new global illuminationsolution is not needed for every frame. The
disadvantages are the precomputation time and storage space required as the number of
objects becomes very large.

In a temporally varying range-image based system, we move through time by in-
terpolating between images in a time series for each base view. In this case, we are
producing frames that represent a full global illumination solution—taking into account
both diffuse and non-diffuse illumination. Radiances do not need to be stored for every
object for every time.

Direct Illumination and Visibility. Relatively standard techniques for ray tracing an-
imations can be used to exploit the coherence of direct visibility and shadowing in the
base range-images. Rather than computing images for every 1/30 sec, the time steps for
these base images can be determined by detecting the amount of geometry or shadowing
change over longer lengths of time.

Even with this reduced number of base-time images, how can we avoid a pixel by
pixel recalculation of the global illumination for each time step? As in the temporal
radiosity methods we seek to exploit the temporal coherence in the full global solution
to reduce the calculations.

Indirect Illumination. As noted Section 2, hybrid approaches exploit spatial coher-
ence by computing indirect illumination effects using relatively sparse spacing in object
space. We can use the same sparse sampling of object space to exploit temporal coher-
ence.

Figure 1 illustrates the relationship between sampling indirect illumination in time
and in space. Consider Figure 1a. For a static environment, we can sample indirect
illumination at points A and B and interpolate between them, because the effect of
object O on diffuse (or near-diffuse) reflection varies continuously between A and B.
The amount of light from O that is reflected from A is slightly higher than the amount



reflected from B because O subtends a larger solid angle from A, and because the angle
of O to the surface normal is slightly lower at A.

If object O is moving, indirect illumination at point A at times time 1 and time 2
varies in the same manner that the indirect illumination varied with position between
A and B in the static case. At time 2 the light A reflects from O is a bit less because
the solid angle subtended by O is smaller, and the angle of O to the surface normal has
increased.

Because the changes in indirect illumination resulting from object motion are equiv-
alent to the changes in indirect illumination as a function of distance in the static case,
we can sparsely sample indirect illumination in time as well as in space.
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Fig. 1. Figure (a) illustrates that the indirect illumination of point A by object O is only slightly
different than the indirect illumination of point B by object O. Figure (b) illustrates that the
difference in indirect illumination of point A caused by the movement of object O from time 1 to
time 2 is the same as the difference in indirect illumination between A and B in the static case.

Our approach then is to compute indirect illumination for sparsely separated points
for very large time steps. Interpolation between these solutions will then be used to
compute the indirect illumination for the time series of images at each base view point.

3.3 The Whole System

The overall framework of our approach is shown in Figure 2. The indirect illumination
is sampled sparsely in time and space in object space (top row). The indirect illumination
solution is then interpolated and used as the basis to produce the full global illumination
for each of the base images (middle row). Finally, for any path in the view space, images
are generated for each frame by interpolating the base images.

To build the system diagrammed in Figure 2 we need the following: 1) Rules for
selecting the base view positions so that the entire space a user may wish to tour
is spanned, 2) Rules for selecting the times steps at which base views are computed
so that motions are adequately represented, and 3) Rules for selecting the points and
times for which indirect illumination is to be computed. We also need to choose a
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Fig. 2. Indirect illumination is sampled sparsely in time and space in a simplified, animated object
space. Radiance images are computed more frequently in time for selected base views, using
interpolated values from the indirect illumination solution. One image per frame is computed for
any path in the view space by interpolating base images.

particular method for computing the indirect illumination, the base images, and for
efficiently performing the various interpolations. In the next section we describe an
initial implementation of the system we have just outlined.

4 Implementation

As input to our initial implementation, we have the environment description, the specifi-
cation of objects and a view space. The view space defines the portion of the environment
that can be toured. Locations for the base views are found by adaptive subdivision. The
initial time discretization is estimated by accounting for direct lighting effects. The time
discretization for each view is then further refined. In parallel to the establishment of
base views, the sparsely sampled indirect illumination solutions are calculated. The in-
direct illuminationsolutions are then used to compute the base images. We now consider
each of the elements of the implementation in more detail.



4.1 Selecting Base Views

The view space S is a set of view locations that is some subset of the full environment.
The view space may be 1-D, 2-D, or 3-D, allowing the user to move along a line, within
a plane or through a volume respectively. In our initial implementation we consider a
2-D space, although the methodology can easily be applied to the 1-D or 3-D cases.

Ideally, to allow the user to have a free range of movement within S, the view
for the entire sphere of directions should be stored, (see Figure 3, left). In our initial
implementation, however, we consider only a hemispherical fish-eye view (see Figure 3
right), restricting the directions and fields of view available to the viewer. To extend our
method, we would simply need to define a scheme for sampling the sphere of directions
nearly uniformly (i.e. avoiding concentrations of samples at the “poles.”)

The base view locations in S are determined by adaptive subdivision. The subdivi-
sion level is controlled by a preselected quality parameter q, which ranges from zero to
one. A value of q equal to zero will result in no subdivision, a value of q equal to one
will result in a very dense population of view locations.

The subdivision begins by defining synthetic cameras at the corners of the space.
A P by Q resolution id-image is formed for each camera. In an id-image the pixel
values are unique numerical identifiers for the objects visible at the pixel. Depending
on the geometry of the objects, the id-image could be formed by a variety of techniques
(scan-line, ray tracing, etc.) In our implementation we use the SGI display hardware
to form the image, by assigning a unique 32-bit color to each polygon in place of its
physical color. The number of pixels N that have the same id for all of the cameras is
counted. The “fitness” f of this set of locations is computed as N=PQ. If f is less than
the quality parameter q, the space is subdivided, and the test is applied recursively.

Fig. 3. A viewer has maximum freedom in a 3-D view space with full views stored (left). In the
initial implementation a 2-D view space with fish-eye views is used (right).



4.2 Time Steps for Base Views

The frequency of time sampling for each base view is determined first by checking
the general variability in direct illumination, and then by refining the time sequence
according to a visibility test for each view point.

To check the general variability in direct illumination, we place a camera at the
position of each light source and project all objects in the scene onto the camera using
a fisheye projection. Initially, this is performed for the beginning and endpoints of the
animation, and a comparison of the result id-images is used to compute a value of f for
the two points in time. The time interval is subdivided recursively until the value of f
for all pairs of successive times exceeds q for each of the light sources.

The approach assumes point light sources. These points may be the centers of mass
of clusters of small light sources, or may be sample points chosen on area light sources.
Note that no illumination calculations are being performed with this process, we are
simply estimating the time frequency for which highlights and shadows will need to be
updated.

Next, for each of the base views, we wish to refine the time sequence further by
using visibility tests for each of the viewpoints. Each view point could have its own time
sequence – i.e. there may be relatively little motion in some views relative to others. In
our initial implementation, just one master time sequence is generated. To do the base
view time refinement, the procedure is the same as just described, but the list of base
view locations is used in place of the light source locations.

4.3 Indirect Illumination

To compute indirect illumination, we use a hierarchical radiosity solver [14] on a sim-
plified environment [18]. The time steps used for recomputing the indirect illumination
are found by recursive subdivision. Alternatively, a static set of points could have been
chosen to compute indirect illumination with the Radiance package [22]. The points
could have been chosen by doing a set of “overture” calculations for random views
within the view space. The advantage of the radiosity preprocess however is that the
resulting values are associated with objects. For large moving objects, both the value of
the illumination and the position at which that illumination is valid can be interpolated
in time.

A number of methods could be used to simplify the full mega-object environment
to a relatively small number of polygons for the radiosity solution. In this initial imple-
mentation, we use a simple criterion based on visibility from the view constraint space.
For each of some number of trials, a random time is chosen. For the environment at
that time, random viewpoints in the constraint space are chosen. For each view, a large
number of rays are shot through a wide viewing angle. A record is kept of how many
times each object is hit in this process. Based on the number of hits, an object may be
ignored (a very small number of hits), simplified (somewhat larger number of hits), or
restricted in subdivision (large number of hits) in the radiosity solution.

In the indirect solution, the objects move and the radiosities change. However,
once the simplified geometry has been defined, the list structure storing the indirect
illumination does not change. This makes it easy to perform an object space “fitness”



test. In the indirect case f is defined as the number of vertices in the solution that have
changed less than some small percentage �. Once again, the time sequence is subdivided
recursively based on a comparison of f and q. Note that the list of times for which
each indirect illumination solution is computed is determined completely apart from the
times for which each new base view is computed.

4.4 Computing and Using the Base Images

To compute the base images, we use Radiance, substituting the indirect illumination
values we computed with the radiosity solver, interpolated for the appropriate time, for
the cached values usually used in Radiance.

Once all the base images are computed for the selected locations and times, ani-
mations for arbitrary paths through the view space can be generated by interpolating
between the images closest in time and space. The view interpolation, which is es-
sentially the image morphing described by Chen and Williams, is performed with thepinterp function, which comes with the Radiance distribution. Time interpolation is
performed using the pcomb function.

5 Results

To demonstrate the effectiveness of the new framework, we have applied it to two differ-
ent environments – a geometrically complex architectural space and a simple “Cornell
box” with two moving objects. The complex architectural environment consisted of
approximately 75,000 surfaces. These surfaces included a full range of reflectance
properties.

Table 1 summarizes execution times for processing the a small view space in the
studio environment which we simplified to 5000 surfaces. A quality parameter of q of .7
was used and all times are for a single R4400 processor. Examples of the resulting frames
are shown in Figure 8. The total time for processing the environment and generating
one 30 frame animation was 3664 minutes. The power of the new framework however
is the small marginal cost to compute additional sequences. For example, to produce
two addtional walkthroughs required only 60 cpu minutes.

Building

Algorithm Time (minutes) Number of Executions Total Time (minutes)

Visibility Coherence 23 1 23
Direct Coherence 0 0 0
Indirect Illumination 220 1 221
Base Image Generation 420 8 3360
Image Interpolation 2 30 60
Time Interpolation 0 0 0

Total 3664

Table 1. Execution times for the building environment.



To demonstrate the application to an animated environment, we used a simple
“Cornell box” that contained two moving cubes. The simple environment highlights the
variation of indirect illumination with object movement. The two cubes are are red and
blue, and have rough specular surfaces. The cubes move diagonally through a red, white
and green enclosure.

Table 2 summarizes the execution times for each stage in the processing of this
environment and computing a 30 frame walkthrough. For this animation, we used a
quality q of .95, which is very high. The total time required was 2363.5 minutes.

For an animated environment, the additional cost per frame is higher than the static
environment, since the time interpolation of base images is required. The walkthrough
sequence demonstrates that the user can walk through the moving environment and
observe changes in the shiny surfaces and the indirect illumination as well as the overall
object motion.

Figure 9 shows images from an early, lower quality (the quality q was .7) version
of the animation. Figures 9a and 9b show the indirect solutions. Figure 9c shows
an intermediate solution in which both illumination and object positions have been
interpolated.

Cornell Box

Algorithm Time (minutes) Number of Executions Total Time (minutes)

Visibility Coherence 1 1 1
Direct Coherence 20 1 20
Indirect Illumination 5 2 10
Base Image Generation 12 2� 25 = 50 600
Image Interpolation 1.5 45� 25 = 1125 1687.5
Time Interpolation 1 45 45

Total 2363.5

Table 2. Execution times for the Cornell box environment.

The results for these two environments demonstrate the feasibility and potential
of the new framework. They do not by any means constitute a proof of robustness of
the current implementation. Additional testing is required to understand the impact of
the quality setting q, to determine appropriate initial discretizations in space and time
to insure the adaptive procedures converge, and to measure performance for complex,
animated environments.

6 Summary and Discussion

We have presented a new framework for efficiently computing and storing global illu-
mination effects in complex, animated environments. Our approach is a range-image
based system, which exploits coherence by computing direct and indirect illumination
separately in both space and time. Indirect illumination is computed for sparsely sepa-
rated points for very large time steps. Interpolation between these solutions is used to



compute the indirect illumination for the time series of images at each base view point.
We demonstrate that the range-image approach allows the rapid generation of the views
along arbitrary paths within a view space, which is a subset of the whole environment.
The framework represents a major step toward the ultimate goal of allowing users to
interact with accurately rendered, animated, geometrically complex environments, as it
allows for a user to tour a view space rendered with full global illumination effects in
which objects move.

Within the context of the framework, there are several areas that require future
research. First, we would like to devise a scheme to define and quantify an acceptable
error for a given animation. Second, we would like to address the notion of freedom
of movement in greater detail. For instance, many tradeoffs are possible between user
interactivity and the quality of the animated sequence. Third, the problem of auto-
matically determining the base views for a three dimensional environment is an open
research topic, which could involve research in computational geometry. Last, there is a
potential for real time walk-throughs using specialized hardware for the view and time
interpolations.
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