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Abstract
Under the Lambertian reflectance model, uncalibrated pho-
tometric stereo with unknown light sources is inherently
ambiguous. In this paper, we consider the use of a more
general reflectance model, namely the Torrance and Spar-
row model, in uncalibrated photometric stereo. We demon-
strate that this can not only resolve the ambiguity when the
light sources are unknown, but can also result in more accu-
rate surface reconstructions and can capture the reflectance
properties of a large number of non-Lambertian surfaces.
Our method uses single light source images with unknown
lighting and no knowledge about the parameters of the re-
flectance model. It can recover the 3-D shape of surfaces
(up to the binary convex/concave ambiguity) together with
their reflectance properties. We have successfully tested our
algorithm on a variety of non-Lambertian surfaces demon-
strating the effectiveness of our approach. In the case of
human faces, the estimated skin reflectance has been shown
to closely resemble the measured skin reflectance reported
in the literature. We also demonstrate improved recognition
results on 4050 images of 10 faces with variable lighting
and viewpoint when the synthetic image-based representa-
tions of the faces are generated using the surface recon-
structions and reflectance properties recovered while as-
suming the extended reflectance model.

1 Introduction
Assuming Lambertian reflectance [13] in uncalibrated pho-
tometric stereo, where the albedo spatially varies and the
light sources are unknown, simplifies the problem but has
two major drawbacks. First, non-Lambertian objects, such
as shiny metals, cannot be reconstructed faithfully, espe-
cially when the deviation from the Lambertian assump-
tion is large. Secondly, there is an inherent 9-parameter
ambiguity in the surface normals and light source direc-
tions [10]. In the case when the integrability constraint is
applied to the surface normals, the ambiguity is reduced
to the 3-parameter generalized bas-relief (GBR) ambigu-
ity [2, 27, 5]. This ambiguity cannot be resolved any fur-
ther with photometric data when assuming Lambertian re-
flectance. Additional information is required.

As a consequence of these two above-mentioned prob-
lems, synthetic images of reconstructed non-Lambertian
objects viewed under variable lighting will show a lack of
the specular component; the shininess of a lacquered ob-
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ject or that of a sweaty face will be missing. Furthermore,
synthetic images of these reconstructed objects with vari-
able viewpoint will differ from real images by an unknown
image-plane affine transformation [26, 9].

In this paper, we extend uncalibrated photometric stereo
to include a non-Lambertian reflectance model, namely the
Torrance and Sparrow (T-S) model [23]. With this model,
we can capture the reflectance properties of a large num-
ber of non-Lambertian surfaces, we can more accurately re-
construct the surface geometry, and we can resolve the 3-
parameter GBR ambiguity up to the binary convex/concave
ambiguity. Our method assumes no knowledge of the re-
flectance map, i.e., the light sources and the parameters of
the reflectance model are unknown.

When classical photometric stereo was introduced [25,
20, 12], the reflectance map was constrained to be Lamber-
tian and the light sources were assumed to be known. The
latter assumption introduces the need for cumbersome cal-
ibration which can be difficult to do accurately in practice.
In previous work [8, 7], a variant of Lambertian photomet-
ric stereo was implemented where no knowledge about the
light sources was assumed and where integrability was en-
forced on the surface normals. The geometry and albedo of
a wide variety of surfaces was estimated up to the GBR am-
biguity. For faces, their symmetries and similarities were
exploited to resolve the three parameters that specify the
GBR ambiguity.

In this paper, we show that extending the reflectance
model beyond Lambertian can resolve the GBR ambiguity
using only photometric data and without resorting to ad-
ditional extraneous information, such as knowledge of the
light source strengths or of some sparse set of albedos. Over
the years, many have applied non-Lambertian reflectance
models in photometric stereo, but they assumed a known
reflectance map and hence knowledge of the light source
directions and strengths [22, 3, 14, 16, 21].

Quite recently, an uncalibrated photometric stereo
method was presented where the object reflectance is as-
sumed to be the sum of Lambertian and mirror-like re-
flectance [4]. In that paper, the “consistent viewpoint con-
straint” is employed on a minimum of four normals of spec-
ular points to reduce the ambiguity; in the case when the
integrability constraint is also used, the ambiguity is then
reduced to the binary convex/concave one. Nevertheless,
this method is in essence a Lambertian photometric stereo
where the sparse specularities are treated as outliers to the
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Lambertian model. Hence, this method will, in general, not
be able to accurately recover the shape of non-Lambertian
objects (which may exhibit specular lobes), nor will it be
able to recover their non-Lambertian reflectance. Further-
more, the sparse set of specular points required by this al-
gorithm were selected by hand from a set of segmented non-
Lambertian regions in the images.

In our method, we incorporate the T-S model in uncal-
ibrated photometric stereo because it has both a Lamber-
tian part and, more importantly, a specular lobe of vary-
ing sharpness and strength. This model was derived from a
physical model of the roughness of surfaces and can cap-
ture the reflectance properties of a wide variety of non-
Lambertian surfaces. In our algorithm, the GBR ambigu-
ity can be resolved because the specular lobes in the ac-
quired images with respect to the light sources and cam-
era have to be aligned with the lobes derived from the T-S
model. This is, in a sense, a generalization of the consistent
viewpoint constraint presented in [4]. Note that the specu-
lar lobes of most real-life surfaces can exhibit off-specular
behavior, i.e., the maximum intensity for most incidence
angles will not be aligned with the perfectly (mirror-like)
specular direction utilized by the consistent viewpoint con-
straint. This off-specular behavior can nevertheless be cap-
tured by the T-S model and we have successfully applied
it to real, non-Lambertian surfaces, including human faces.
We have recovered not only their 3-D shape (up to the bi-
nary convex/concave ambiguity) but also their reflectance
properties. For faces, the estimated skin reflectance has
been shown to closely resemble the measured reflectance
function reported by Marschner, et al. [15].

In [6], we have demonstrated the increased photorealism
of synthetic images of human faces when using the recov-
ered reflectance properties based on the T-S model. In Sec-
tion 6, we demonstrate improved recognition rates on 4050
images of 10 faces with variable lighting and viewpoint
when synthetic image-based representations of the faces are
generated using the surface reconstructions and reflectance
properties recovered while assuming the T-S model.

2 Non-Lambertian Reflectance Functions
The surface reflectance of objects is usually represented by
the four parameter Bidirectional Reflectance Distribution
Function (BRDF). Those parameters are the two incoming
light source direction angles, ��� ��, and the two viewing di-
rection angles, ��� ��. The BRDF is defined as follows:

����� ��� ��� ��� �
������� ��� ��� ���

������� ���
� (1)

where ������� ��� ��� ��� is the outgoing irradiance from an
infinitesimal patch on the surface, and ��� is the incident
radiance from an infinitesimal source. Due to Helmholtz
reciprocity [11], ����� ��� ��� ��� � ����� ��� ��� ���. This
means the BRDF is the same if the light source and the cam-
era (sensor) are interchanged.

The above representation assumes that the light is
monochromatic, and that it arrives at and bounces away
from the same surface point. This precludes translu-
cency and phosphorescence. Under the isotropy assump-

tion, a common simplification and not an unreasonable one,
����� ��� ��� ��� � ����� ��� �� � ��� � ����� ������.

As it can be surmised by looking around in a room, the
BRDF function of surfaces can be quite complicated. To
simplify things and to make them more tractable in different
applications in Computer Vision such as photometric stereo,
binocular stereo, tracking, and so on, the surface reflectance
has usually been assumed to be Lambertian (i.e., perfectly
diffuse). Under the Lambertian assumption, the appearance
of an object surface is the same as the viewing direction
changes, and is only proportional to the cosine of the angle
between the local surface normal and the light source direc-
tion. Invoking the Helmholtz reciprocity, it can be shown
that the BRDF of a Lambertian surface is constant, i.e.,

�L � �� (2)

where �� is the Lambertian (diffuse) albedo. Although it is
never true in reality, the Lambertian BRDF can nonetheless
be a satisfactory approximation to the reflectance of many
real surfaces.

On the other extreme is the perfectly specular reflectance
exhibited by a perfect mirror. In this case, the BRDF of the
surface can be shown to be a Dirac delta function with an
infinite magnitude only when the incoming light direction
is the reflection of the viewing direction about the surface
normal and within the incidence plane. Like before, this is
also an idealization of real mirror surfaces.

Over the years various non-Lambertian parametric mod-
els have been proposed for the reflectance of real-world
surfaces. These parametric models can be divided into
physically-based and empirically-based models. One issue
that has bedeviled the Computer Graphics community is the
complexity of these different models. The best known em-
pirical model is the Phong model [18], and it has been pop-
ular because of its simplicity and fairly decent rendering
results. Nevertheless, the Phong model has no physical ba-
sis because it cannot capture important reflectance effects.
These include the significant increase in the BRDF values
and the off-specular forward scattering as the incidence an-
gle becomes large. It has been noted that many materials,
including metals, oxides [23], and human skin [15], exhibit
these properties.

The Torrance and Sparrow model [23] is a physically-
based model that can capture those two effects. It assumes
that reflectance consists of two components. One is asso-
ciated with bulk material effects which are assumed to lead
to a Lambertian lobe colored by the (diffuse) albedo at a
particular position on the surface. The other component is
assumed to be purely related to surface scatter.

With the T-S model, the surface is modeled as a large
collection of perfectly specular micro-facets whose surface
normal deviation from the average surface normal is as-
sumed to be a zero-mean Gaussian—the higher the variance
of deviation the rougher the surface, and hence the duller its
appearance due to higher scatter. This surface scatter leads
to a specular lobe in the forward direction. Combining these
two terms gives the following BRDF for the T-S model:

�TS � �� � ���	 ��
�

� 
�
�����������

	
� �� 	
� ��
� (3)
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where �� is the Lambertian (diffuse) albedo, �� is the spec-
ular albedo, � is the surface roughness (the lower its value
the higher the roughness), and �� is the angle between
the surface normal and the bisector of the (incoming) light
source and (outgoing) viewing direction. � is the bistatic
shadowing (also known as the geometric attenuation) fac-
tor, and 	 ��

�

� 
� is the Fresnel reflectivity [19], where �
�

is the phase angle, the bisecting angle between the incom-
ing and outgoing directions, and 
 is the index of refraction.
Note that the T-S model BRDF is isotropic and satisfies the
Helmholtz reciprocity [11].

The image intensity derived from the T-S model when a
single point light source � at infinity illuminates the object
is given by

�TS � ������� 	
� �� � ��������	 ��
�

� 
�
�����������

	
� ��
� (4)

where ����� is the light source intensity.
The T-S model deviates from the Phong model on two

counts. First, there is the exponential function that comes
from the Gaussian assumption mentioned above. It should
be noted that the cosine term in the Phong model has no
physical basis. The second difference is the existence of
the �
 	
� �� and �
 	
� �� terms in the expression for the
T-S model in Equation 3. These two cosine terms can affect
the BRDF considerably. They lead to a significant increase
in the BRDF values along with (increasingly) off-specular
maxima as the incidence angle becomes larger [23]. As
noted above, many materials including metals, dielectrics
(e.g. oxides) [23], and human skin [15] exhibit this behav-
ior making the T-S model a good candidate for modeling
their reflectance.

One aspect of reflectance not captured by the T-S model
is the backscatter lobe. This can be observed in metals and
in painted surfaces. In this case, the model by Oren and
Nayar [17], which is based on the same surface roughness
model and assumptions as the T-S model, is more suitable.
Nevertheless, the Oren and Nayar model does not capture
the forward scatter, a more common effect. Notably, human
skin as well as many dielectrics (e.g. oxides) do not ex-
hibit any significant back-scattering properties [15, 23] and
the T-S model can capture their reflectance properties quite
well.

In the following sections, the bistatic shadowing factor,
Q, and the Fresnel reflectivity, F, in Equation 4 are ignored
due to their very insignificant effect when the phase angle,
�
�

, is quite small (i.e., when the light source and viewing
directions are quite close together [22]). This was the case
in the training images in the example reconstructions shown
in Section 5.

3 Resolving the GBR ambiguity
As noted before, in the case of Lambertian reflectance, the
surface of an object seen under variable lighting, but with
fixed viewpoint, can only be reconstructed up to the GBR
ambiguity. This means we can only recover 
���� �� �
������ �� � ���� ��� (where the �� are the three GBR pa-
rameters), instead of ���� ��, the true surface height func-
tion [2]. As far as the surface normals are concerned, we

can only recover

����� �� �
������� ��

��������� ����
� (5)

where

��� �
�

��

�
�� � �
� �� �
��� ��� �

�
� (6)

and

���� �� �
������ ��� ����� ������

��
������ �� � ������ �� � �

� (7)

Note that ����� �� and ����� �� are the �� and ��partial
derivatives of the surface, and ��� � ������ � ��� ���.

Under the Lambertian model, the irradiance emanating
from the surface of a body is invariant under the GBR trans-
formation. If ���� �� � ����� ������ ��, where ����� �� is
the (Lambertian) albedo, then it is easy to see that the image
intensity �L��� �� � ������ � �������� � �� ��, formed
by illuminating the surface by a single light source, � �, is
invariant under the GBR transformation.

With the T-S model, on the other hand, the image inten-
sity is not invariant under the GBR transformation. This is
evident in the following:

�TS������ �������

� ������ �

��������� ������
��	
����

��
� �

���
�������

����

������ ��
���

�������
�����

����

��� ��
������

� ��������

�

��������� ������
��	
����

�
�	���

���
�������

����

��	����� ��
���

�������
�����

����

��� �	����
��	�����

� (8)

where �� is the unit-length viewing direction. In general,
�TS������ ������� �� �TS����� ��� ��� as one traverses an im-
age. Equality (across the whole image) holds only when �
is equal to the identity matrix.

The above observation leads us to the natural question
of what is the minimum number of ��� ��� pairs required
to pin down the solution of the GBR ambiguity. It should
be noted that � has three free parameters (or degrees of
freedom), namely ��� ��, and ��. The right-hand side of
Equation 8 is therefore a non-linear function of those three
parameters. With only one ��� ��� pair, the solutions of
�TS������ ������� � �TS����� ��� ��� lie on a 2-D surface in the
3-D space of ��� ��, and �� (including the point that corre-
sponds to� being equal to the identity matrix). This surface
can, in general, be shown to be regular, but not necessarily
connected. Note that there are in general two parts, one for
�� � � and one for �� � �. For the purposes of this discus-
sion we will restrict ourselves to the case when �� � �.

Each equation �TS������ ������� � �TS����� ��� ��� associ-
ated with a ��� ��� pair provides a single constraint on the
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values of ��� ��, and ��. The task is to show that one cannot
have more than one solution, other than �� � �, �� � �, and
�� � � (i.e., � is equal to the identity matrix), when there
are four or more ��� ��� pairs.

As noted above, with a single pair there is an infinite
number of solutions that lie on a 2-D surface in the 3-D
space of ��� ��, and ��. We follow here the worst case
scenario—even with a single pair the solutions can some-
times lie on a 1-D surface. One usually does not encounter
this case except when ������ ��� ��� is a critical value (such
as a maximum), and hence the 1-D surface is a critical sur-
face. In this discussion, the solution surface will be assumed
to be 2-D.

With two light sources (i.e., two ��� ��� pairs), the so-
lutions lie on an 1-D subspace. This is because two 2-D
regular surfaces in 3-D in general intersect at an 1-D sub-
space. Now, this 1-D space, under certain conditions, can
intersect a 2-D solution surface defined by a third ��� � ��
pair only at a finite (although unknown) number of points.
Those conditions stipulate that the ��� ��, are distinct in di-
rection, and that the angles between � and the � � are always
less than ��
, i.e., the light sources cast some light on the
infinitesimal surface patch associated with �. Furthermore,
we assume that this surface patch is strictly visible, i.e., the
angle between the viewing direction and � is less than 90
degrees. Under these conditions, with three ��� � �� pairs,
the solutions are in general point solutions, i.e., they are
non-degenerative.

This can be seen by looking at the Hessian
of the objective function, ���� �

�
� �����

� ��
� ��TS������ ��������� � �TS����� ��� ����

�, where
� � ���� ��� ���

� . Under the conditions mentioned
above and in the case of three ��� ��� pairs, the Hessian is
full-rank and positive-definite at a solution. This can be
demonstrated by taking the second derivative of ���� w.r.t.
� at a point in the 3-D space where there is a solution, i.e.,
where �TS������ ������� � �TS����� ��� ��� for all three pairs
simultaneously:

���� � ������

� �
�
�

�������������� ���������������
�

� �
�
�

��������������
� � (9)

If the ������ are distinct, which in general they are under
the conditions given above, then the ��� Hessian, ����, is
full rank and positive-definite. This implies that the solution
is non-degenerative.

When we have 4 or more distinct, randomly chosen
pairs, ��� ���, then there is a zero probability that there will
be multiple solutions, i.e., there is a zero probability that a
2-D solution surface defined by the fourth, randomly cho-
sen ��� ��� pair will intersect with any of the finite number
of point solutions defined by the first three pairs (except at
�� � �, �� � �, and �� � �).

Alternatively, consider the constraint that the point solu-
tions, in the ��� ��, and �� space (with three ��� ��� pairs),
place on the fourth randomly chosen light source so that

the fourth ��� ��� pair is also a solution. A point solution
in the ��� ��, and �� space provides a single constraint on
the fourth light source direction, which has two degrees of
freedom, namely azimuth and elevation. Hence, in the 2-D
space of possible azimuths and elevations for the fourth
light source direction, there is only an 1-D space where
this constraint is satisfied. Nevertheless, when we randomly
choose the fourth light source direction out of the possible
2-D space, there is a zero probability that the light source
will come from that 1-D solution space. Hence, four ��� � ��
pairs are sufficient to resolve the GBR ambiguity.

Granted, the existence of a unique global minimum does
not guarantee that ���� has no local minima in the ��� ��,
and �� space even with 4 or more ��� ��� pairs. Furthermore,
showing uniqueness is more challenging when one also op-
timizes over light sources, surface normals, albedos and the
parameters of the reflectance model. In the next section, we
outline our surface reconstruction and reflectance recovery
algorithm and describe how to avoid local minima in almost
all practical cases.

4 Surface Reconstruction and Recovery of
Reflectance Function

The algorithm described here is an extension of the un-
calibrated photometric stereo technique presented in [7] in
which no knowledge about the light sources was assumed
and integrability was enforced on the surface normals. We
have incorporated in that algorithm the T-S model of re-
flectance, requiring to estimate, along with the other pa-
rameters, �� and � of the T-S model shown in Equation 3.
All the parameters—surface normals, Lambertian albedo,
light sources and the parameters of the T-S model—are it-
eratively updated using least squares techniques.

While ����� ��, the diffuse albedo in Equation 3, varies
spatially, the parameters of the surface scatter term in the
T-S model are assumed not to be a function of ��� ��, which
implies that �� and � are constant over ��� ��. (Note that
�� in Equation 3 is still a function of ��� �� because it is
a function of the surface normal field, ���� ��.) The spa-
tial invariance of �� and � is, of course, not entirely true
in real surfaces, e.g. the eyes have a quite different BRDF
than the skin part of a face. It is, nonetheless, not an unrea-
sonable assumption and makes the problem more tractable.
Allowing �� and � to vary across the surface is an interest-
ing problem, but it can be very difficult to solve reliably.

In this exposition, we let the surface of an object ���� ��,
whose reflectance is given by the T-S model shown in Equa-
tion 3, be viewed by an orthographic camera, and let the
camera acquire an � pixel image of this surface. Let the im-
age be denoted by the vector � � ���. Note that the image
is written as a vector with each pixel corresponding to an
element �� of the vector �. A pixel �� samples the image
irradiance at some point in the image plane as specified by
its Cartesian coordinates ��� ��.

We acquire � images of the object by fixing the ob-
ject’s position relative to the camera and moving the light
source to some unknown position, � �, before each acquisi-
tion. Let the acquired set of images be denoted by matrix
� � ���� � � � � ��� with ��� being the value of the �-th pixel
in the �-th image. Note that the images can have shadows
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(both cast and attached), and possibly saturations—these do
not satisfy the T-S model of reflectance. We therefore de-
termine which pixels are observing either a saturation or a
shadow and mark them as being invalid. Any invalid data
(both shadows and saturations) are treated as missing mea-
surements by our estimation method.

To determine the 3-D shape and reflectance properties of
the object, we solve the following minimization problem:

���
��
 ����
��
 ��
 �
 ��

���� � ����� ��� ��� �� �����

�
�
��

��� ���� � �TS��� � ����� ��� ��� �� ������
�� (10)

where

��� �

�
� ��� valid pixel measurement,
� otherwise.

�TS is given in Equations 4 and 8, and the Cartesian position
��� �� corresponds to the �-th pixel. We solve this mini-
mization using steepest descent in an iterative scheme. The
algorithm is initialized as in [7] and then let run for 20-30 it-
erations with only the Lambertian model. After this, the full
T-S model is introduced. This almost always prevents the
solution from falling into a local minimum during the initial
iterations and when the surface normals, albedos, and light
sources are very far from their respective solutions. More
details about the algorithm are presented in [9] and [6].

5 Reconstruction Results
In this section, we show reconstruction results for part of
a lacquered globe and for a face. The results demonstrate
that incorporating the T-S model in uncalibrated photomet-
ric stereo leads to better surface reconstructions for objects
that do not obey the Lambertian reflectance assumption, re-
solves the GBR ambiguity inherent in uncalibrated photo-
metric stereo, and recovers the parameters of the extended
reflectance model. In the case of faces, the recovered skin
reflectance function closely resembles the previously mea-
sured one [15].

Figure 1 shows the reconstruction of part of the globe.
Twelve training images (of size ��� � ��� pixels) were
used which were selected so that the light sources were not
centered around the optical axis. This helps remove any
accidental symmetry that could influence the resolution of
the GBR ambiguity. Note also that no attempt was made
to threshold out the specular regions in the training images
(Figure 1.a); only saturated pixels were removed.

The results associated with the T-S model are clearly bet-
ter than those associated with the Lambertian model. For
example, note that the (diffuse) albedo of the T-S model re-
construction exhibits much less GBR-induced spatial varia-
tion than the albedo of the Lambertian reconstruction 1. This
implies that for the T-S model reconstruction, the GBR am-
biguity has, to a large extent, been resolved. Moreover, the
�� and ��derivatives of the surface for the Lambertian
case, in the top row of Figure 1.b, show distortion in the

1Note that the albedo varies as a function of the GBR parameters, as
shown in [2].

a.

b.

c.

Figure 1: The surface reconstruction of part of a globe:
a. Three out of the 12 images used in the reconstruc-
tions, where the light source directions can vary up to ��


from the optical axis. b. The top row shows the ��
and ��derivatives of the surface and the albedo, ����� ��,
for the Lambertian model reconstruction. The bottom row
shows those corresponding to the T-S model reconstruc-
tion. c. The renderings of the Lambertian reconstruction
(top) and the T-S reconstruction (bottom) viewed along the
���diagonal. The corresponding albedos ����� �� have
been texture-mapped on the surfaces, while the units of the
vertical axes are in pixels. The parameters of the T-S model
recovered during the reconstruction were: �� � ������ (the
average albedo over the whole image), �� � ������, and
� � ������.

central part due to the presence of specularities in the train-
ing images. This is not visible in the �� and ��derivatives
of the T-S reconstruction in the bottom row because in this
case the specularities have been discounted. Last, but more
importantly, notice how the Lambertian reconstruction, in
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a.

b.

c.

Figure 2: The surface reconstruction of a face: a. Three out
of the 12 images used in the reconstructions where the light
source direction can vary up to ��
 from the optical axis. b.
The top row shows the �� and ��derivatives of the surface
and the albedo, ����� ��, for the Lambertian model recon-
struction. The bottom row shows those corresponding to the
T-S model reconstruction. c. From left: side-view of the
Lambertian model surface reconstruction; the same surface
viewed from behind the face so as to demonstrate its flat-
ness; side-view of the T-S model reconstruction; side-view
of the structured-light multi-view reconstruction of the face
(courtesy of Eyetronics). In the Lambertian case, notice the
flattened surface as well as the presence of an additive plane.
In the T-S model case, on the other hand, the GBR ambigu-
ity has to a large extent been resolved. (The differences
noted around the nose tip region between the T-S model
reconstruction and the structured-light reconstruction are
mainly due to the presence of occlusions on the left and
right and on the edges of the nostrils.)

the top row of Figure 1.c, is not only flattened but also re-
veals some distortion in the center. The T-S model recon-
struction, on the other hand, is very close to a sphere, the
expected shape.

Figure 2 shows the reconstruction of a human face. As
was the case with the globe reconstructions in Figure 1, the
12 training images (three of which are shown in Figure 2.a)
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Figure 3: The albedo profiles, ����� ���, of the Lambertian
and T-S model reconstructions of the face shown in Figure 2
along a horizontal scanline half-way down the nose ridge
where the albedo is expected to be approximately constant.
In the Lambertian case, the albedo varies significantly, im-
plying significant flattening, and is higher on the right-hand
side, implying an additive plane. The small albedo variation
of the T-S reconstruction, on the other hand, implies that the
GBR ambiguity has been resolved in that case.

were selected so that they were not centered around the op-
tical axis. The results associated with the T-S model are
better. Notice in Figure 2.c how in the T-S case the GBR
ambiguity has been resolved to a large extent, while in the
Lambertian case the surface appears to be severely flattened
and have a residual additive plane.

Comparing the albedo ����� �� for the two cases can also
reveal the same. Figure 3 shows the albedo profiles for
the Lambertian and T-S model reconstructions of the face
shown in Figure 2, along a horizontal scanline, traversing
the images approximately half-way down the nose ridge and
over a part of the face where the albedo is expected to be ap-
proximately constant. The albedo in the Lambertian model
reconstruction varies significantly, implying significant flat-
tening, and is higher on the right-hand side, implying an
additive plane. The small variation of the T-S albedo, on
the other hand, signifies that the GBR ambiguity has been
resolved in that case.

Significantly, incorporating the T-S model in uncal-
ibrated photometric stereo can also recover the non-
Lambertian nature of skin reflectance. The left of Fig-
ure 4 shows the skin BRDF recovered using our algorithm.
Notice its similarity (up to a global scale factor) with the
previously measured BRDF of human skin shown on the
right. (The plot on the right is courtesy of Stephen R.
Marschner [15].)

The skin BRDF is close to Lambertian at small incidence
angles, but exhibits strongly increasingly off-specular be-
havior as the incidence angle becomes larger. Notice also
how the scale increases by almost 40 times from the top
plot to the bottom. The almost Lambertian behavior when
the incidence angle is small is what justified the use of the
Lambertian model in reconstructing human faces when the
light sources are close to the camera. Of course, in that case,
the GBR ambiguity remained unresolved in the surface re-
constructions. In our algorithm, the deviations from the
Lambertian assumption provide enough information to re-
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Figure 4: On the left, the estimated BRDF of the face in Figure 2 at different incidence angles, � �, estimated using our
method. On the right, the measured BRDF of human skin. The plots show the BRDF values in the incidence plane as � �

varies. The parameters of the T-S model recovered during the reconstruction were: � � � ������ (the average albedo over
the whole face), �� � ������, and � � ������. Note that the BRDF is almost Lambertian at small incidence angles (i.e.,
it is almost constant), but exhibits increasingly off-specular behavior as the incidence angle becomes larger. Observe that
the scale increases by almost 40 times from the top plot to the bottom. Furthermore, the specular lobe seems significantly
removed from the perfectly specular direction exhibiting a maximum at almost glancing � � for most of the range of ��. Notice
the similarities (up to a global scale factor) of the estimated BRDF with the measured BRDF shown on the right. (The plot
on the right is courtesy of Stephen R. Marschner and was presented in [15].)

cover the parameters of the T-S model of reflectance. With
these, the skin reflectance can be accurately predicted for
a wide range of incidence and viewing angles significantly
extrapolating from those in the training images.

Note that although the Fresnel reflectivity was ignored
during the reconstruction process due to its insignificant ef-
fect at low phase angles (less than ��
), it was re-introduced
in the BRDF plots shown on the left of Figure 4, because
the phase angle can be much larger than ��
. The index
of refraction, 
, was assumed to be 1.5—the index of re-
fraction of human skin reported in the literature is usually
1.37-1.5 [24].

6 Face Recognition
A significant motivation for this research was the use of
the reconstructed surface shapes and (non-Lambertian) re-
flectance properties of faces to generate synthetic image-
based representations to be used in face recognition un-
der variable lighting and viewpoint. Incorporating the T-S
model of reflectance in uncalibrated photometric stereo ob-
viates the need to correct for the GBR parameters before
synthesizing images under variable lighting and viewpoint.
Furthermore, the use of the recovered (non-Lambertian) re-
flectance of faces leads to more photorealistic synthetic im-
ages as demonstrated in [6].

We have therefore used this new algorithm to reconstruct
the shape and recover the (non-Lambertian) reflectance

properties of the 10 faces in the Yale Face Database B2.
Seven training images with close to frontal, unknown, sin-
gle light source illumination and with fixed viewpoint were
used for each face. The reconstructed shape and surface re-
flectance were then used to generate synthetic image-based
representations for the 10 faces, as described in [7], mod-
eling the appearance of each face under variable lighting
and viewpoint. Each representation comprises a collection
of (linear subspace approximations) of illumination cones
in the space of images—one cone for each sampled view-
point. (It was shown in [1] that the set of all images of an
object (such as a face) in fixed pose, but under all possi-
ble illumination conditions, is a convex cone in the image
space.)

We have performed face recognition experiments with
the face representations generated using the T-S reconstruc-
tions comparing their performance with that of face rep-
resentations created under the Lambertian reflectance as-
sumption. We have performed the tests on 4050 images
from the Yale Face Database B. These images contain 405
viewing conditions (9 poses � 45 illumination conditions)
for each of the 10 individuals in the database. The im-
ages from each pose are divided into four illumination sub-
sets according to the angle the light source direction makes
with the camera’s axis. Subset 1 (respectively 2, 3, 4) con-

2http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
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Figure 5: Face recognition results under variable lighting
and viewpoint demonstrating the decrease in error rates
when synthetic image-based representations of faces are
generated using the T-S surface and reflectance reconstruc-
tions than the reconstructions recovered under the Lamber-
tian assumption.

tains 70 (respectively 120, 120, 140) images per pose. The
database is also divided into three pose subsets: the “Frontal
Pose”(Pose 1) which includes 450 test images, the “12 de-
gree” subset (Poses 2, 3, 4, 5, 6) which has 2250 test images,
and the “24 degree” (Poses 7, 8, 9) with 1350 test images.
(See [7] for more information about the database.)

Figure 5 shows face recognition results using face repre-
sentations created under the T-S and Lambertian reflectance
models. Note that for all three pose subsets the error rate is
lower with the T-S representations. The overall error has
gone from ����� (120 errors in 4050 test images) with the
Lambertian representations down to ����� (100 errors in
4050 test images) with the T-S representations, a decrease
of �����. This can be attributed to the more accurate mod-
eling of appearance under variable lighting and viewpoint
when incorporating the T-S model of reflectance in uncali-
brated photometric stereo to recover the face surface shape
and reflectance used to generate synthetic images.
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