Understanding and Improving the Realism of Image Composites



Abstract  Compositing is one of the most commonly performed operations in computer graphics. A realistic composite requires adjusting the appearance of the foreground and background so that they appear compatible; unfortunately, this task is challenging and poorly understood. We use statistical and visual perception experiments to study the realism of image composites. First, we evaluate a number of standard 2D image statistical measures, and identify those that are most significant in determining the realism of a composite. Then, we perform a human subjects experiment to determine how the changes in these key statistics influence human judgements of composite realism. Finally, we describe a data-driven algorithm that automatically adjusts these statistical measures in a foreground to make it more compatible with its background in a composite. We show a number of compositing results, and evaluate the performance of both our algorithm and previous work with a human subjects study.